The nature of batchelorite.

THE name batchelorite was given by W. F. Petterd¹ to a green slaty mineral found in the Mt. Lyell Mine, Tasmania. He gave the composition as $H_2O.Al_2O_3.2SiO_2$, a hydrated silicate of aluminium, but added, in parenthesis, that the analysis² was made on green nodules in the schist. It is evident, therefore, that the composition of batchelorite itself was never determined.

A specimen of batchelorite in the British Museum (B.M. 1956, 300), which, although not a type specimen, was collected from the type locality and conforms in appearance with the type mineral, has been shown by its optical properties and X-ray powder pattern to be muscovite schist. A chemical analysis confirmed this and revealed also that the mineral contains a small proportion of chromium. The analysis, given below, corresponds to the formula:

(Na,K,Ca,Ba)_{1.00} (Al,Ti,Fe,Cr,Mg)_{2.03} (Si,Al)₄ O_{10.04} (OH,F)_{1.98}.

There would now appear to be no justification for the retention of the mineral name batchelorite.

Batchelorite from Mt. Lyell, Tasmania (B.M. 1956, 300).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36·4 0·4 0·5	CaO MgO Na ₂ O K ₂ O BaO	 	0·7 % 1·2 1·5 8·8 0·3	$\begin{array}{c} H_2O(-)\\ H_2O(+)\\ F\\ MnO\\ Total\\ less \ O \ for \ F\end{array}$		$ \begin{array}{c} 0.3 \% \\ 4.0 \\ 1.0 \\ nil \\ 100.5 \\ 0.4 \\ 100.1 \% \end{array} $
Department of Mineralogy, British Museum (Natural History), London, S.W. 7.				D. I. Bothwell A. A. Moss			

¹ Catalogue of the Minerals of Tasmania, 1910, p. 22, no. 39. ² SiO₂ 49.4, Al₂O₃ 45.1, H₂O 5.6, total 100.1 %.

Beaverite from the Lake District.

BEAVERITE $(Pb(Cu, Fe, Al)_3(SO_4)_2(OH)_6)$ was first recognized and identified by us as a British mineral in 1949, the occurrence being briefly recorded in 1952.¹ The first suspected specimens were examined spectrographically and they (as well as others found subsequently) were con-