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Determination of 2V from one extinction curve and its
related n, curve

By N. Jogr, M.Sc., Ph.D., A.Inst.P.
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méticas, Universidad de Chile, Casilla 2777, Santiago, Chile

[Taken as read 28 March 1963]

Summary. From the extinction curve of a biaxial crystal mounted on a spindle
stage (or one-axis stage goniometer), the related n, curve can be derived and drawn
on the stereogram. The n, curve is the equivibration curve—or constant-refractive-
index curve—that goes through the projection Fy of the spindle-stage axis. After
the principal diameters (maximum 27 and minimum 2¢) of the n, curve have
been measured, the angle 2V may be calculated by means of the formula cos
V = sin ¢/sin . This method can also be used for determining—or refining—the
directions of the principal axes a, B, v.

HE use of extinction curve methods for determining the orien-

tation of the optical indicatrix of small crystals has been described
by several authors (Joel, 1950 and 1951 ; Joel and Garaycochea, 1957 ;
Joel and Muir, 1958q, b; Wilcox, 1959 ; Fisher, 1962).

Wilcox (1959, 1960) has given a graphical procedure by which it is
possible to determine, by successive trials, the value of 2V and the
directions of the optic axes of a biaxial crystal mounted on a spindle
stage, using an experimental extinction curve. This procedure requires
that the directions of the principal axes! a, B, y of the indicatrix be
determined first, also from the extinction curve ; but of the pair a, y, one
need not know which is a and which is y.

Tocher (1962) has developed an interesting method for locating the
directions of the two optic axes using extinction (or vibration) direc-
tions, thus proving that Joel and Muir (1958a, p. 876) were rather pessi-
mistic when they thought that ‘the positions of the optic axes cannot
be located directly by the extinction curve method’. Tocher’s method is

! The principal axes of the indicatrix are, of course, vectors, having both direc-
tion and magnitude. Many authors employ separate symbols: X, ¥, Z for the
directions, and a, B, y (or Ny, Ng, N,, or Nx, Ny, Ng, or ...} for the magnitudes of
the vectors a, B, y. The Mineral Data Commission of the International Mineralo-
gical Association has recommended that a, 8, ¥ be used both for the magnitudes
and for the directions of the axes, the precise connotation being given by the
context; bold-face type (a, B, y) will be used when an emphasis on the vector
‘status is appropriate—(Ed.).
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a graphical construction based on the Biot-Fresnel theorem, and it
requires the optic axial plane ay to be determined first: this he does from
the extinction curve.

Garaycochea and Wittke (1963) have recently deduced a few simple
formulae from which the angle 2V may be calculated after having
determined from the extinction curve the directions o, 8, y. As their
formulae require only the values of a few angular distances, which are
read off the projection with a stereographic net, they are able to avoid
making further graphical constructions for the determination of 2V
once the extinction curve has been drawn and the a, 8, y axes have been
located.

As the errors in the location of one or more of the three principal axes
may affect the determination of the optic axes, it was thought of interest
to minimize the errors in the former, or if possible, to devise a procedure
by which the optic axes—or at least the value of 2V—could be deter-
mined directly from the extinction curve of a biaxial crystal mounted on
a spindle stage {or one-axis stage goniometer) without having to locate
first «, B, . This turned out to be possible and even quite simple.

The present paper consists of five sections and an appendix; in the
first section the relation between the extinction curve and its ny curve—
the equivibration curve through Py—is explained. The second section
deals with the procedure for obtaining the n, curve given the extinction
curve. The third section gives an alternative technique for locating the
three principal axes of the ellipsoid using the n, curve; this is as simple
as the one first developed by Joel and Garaycochea (1957), it is capable
of refinement and gives a better check of the accuracy achieved, and it
makes easier the identification of the 8 axis. Furthermore, no ‘ghost’
axes are involved.! In the fourth section a very simple formula—related
to the ng curve defined in the first section—is given, with which it is
possible to calculate the value of the optic axial angle 2V without hav-
ing to determine first the orientation of the ellipsoid, and without
measuring refractive indices. An example and some discussion are
given in the fifth section, while the mathematics of the problem are
summarized in the appendix.

On the other hand, using a different approach, which is in fact a
generalization of Tocher’s (1962) method, Joel (1964) has developed
a graphical construction that leads to the direct determination of the
two optic axes—and consequently the three principal axes—from only

1 Tt should be emphasgized, however, that the ghost triangle has never, so far,
caused any trouble, in whatever way the projected extinction curves are drawn.
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four measured extinctions. This construction is rather lengthy, and it is
mainly of theoretical interest ; but it may be useful in cases where only a
few reliable extinctions can be measured and consequently not all of the
extinction curve is available.

Relation between the extinction curve and the n, cuirve

Extinction curves have various geometrical properties and, among
others, the following theorems hold:

Theorem 1. If in a stereographic projection P, represents the direction
of the rotation axis of the spindle stage, and one considers great circles
through P, then the extinction curve is the locus of the points P that
are midway between consecutive intercepts of these great circles with
the circular sections of the ellipsoid (Joel and Garaycochea, 1957).

Theorem 2. The extinction curve is the locus of the points of tangency
between those great circles through P, and successive equivibration
curves! (Joel, 1951).

These equivibration curves—the loci of vibration directions (not pro-
pagation directions) in the crystal that have the same refractive index »
—are ellipses on a sphere (spheroconics) that close around the axes a and
a respectively? if « << n <C §, and around the axes y and y if 8 <<n <y;
if n = o (ory) the curves reduce to a pair of points, a and a (or y and y) ;
and if » = f they coincide with the two great circles that represent the
circular sections of the ellipsoid.

Theorem 3. The extinction curve is the locus of the points P that are
midway between consecutive intercepts of the great circles through
P, with the equivibration curve that goes through P, (fig. 1). This
particular equivibration curve we shall call the n, curve, and it is the
locus of the points that represent vibration directions in the erystal for
which the associated wave has a refractive index equal to 7.

In the next section it will be explained how the n, curve may be obtained from
the experimental extinction curve for the purpose of locating the points «, 8, and y
or calculating the angle 2V. An analytical proof of Theorem 3 is given in the
appendix; but one can also approach the problem in this way: a diametral section
of the ellipsoid through F, is an ellipse as shown in fig. 2. The vibration directions

(extinction directions) OP and OP’ are parallel to the two principal axes of this
ellipse. It follows from symmetry considerations that if we choose @ such that the

lengths OQ and OP, are equal, then the angles P?)\Po and P/O\Q are equal too (and

! The name equivibration curve will be adopted following Wright (1923) and
Phemister (1954) as it is less ambiguous than that of constant refractive index curve
used by Joel (1951). .

? Where appropriate, opposite ends of a diameter of the indicatrix are distin-
guished as «,&, P, P, &c.
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similarly, the angles GOP’ and P,0P” are equal). But Py, §, Py, and @ belong to
the equivibration curve that goes through P, or in other words, the n, curve; and P
and P’ belong to the extinction curve. Theorem 3 is thus proved.

Graphical construction of the n, curve given the extinction curve

To construct the #, curve once the extinction curve has been drawn
is now quite simple (fig. 3). With the help of a stereographic net points
such as ¢ are determined on great circles through P, so that the polar
curve (or the equatorial curve, as the case may be) bisects PoQ.
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Fies. 1 and 2. Fig. 1 (left). The n, curve (equivibration curve through F,) in stereo-

graphic projection; points P halfway between consecutive intercepts of the great

circles through F, with the n, curve are points of the extinction curve. Fig. 2 (right).

Diametral section of the ellipsoid through Fy. OP and OP’: vibration directions;
P, @, P, and §: points of the n, curve.

For the purpose of drawing the n, curve, it is quite helpful, but not necessary, to
proceed as follows: when plotting on the stereogram the pairs of points P and P’ of
the extinction curve (determined by the extinction angles B P = 8, BP’ = 50°4-8),
the point at an angular distance 28 from F, (or 180°+26, as the case may be)
should be plotted as well on the same great circle, as this is a point @ of the n,
curve. Indeed, as was pointed out by Wittke (1962), it can be seen that in this way
one could actually plot directly the n, curve without going through the intermediary
stage of drawing the extinction curve. And, as is shown in the present paper, the
three principal axes and the two optic axes, which can be derived from the extine-
tion curve, can also be derived directly from the n, curve; in this, and possibly also
in other aspects (though certainly not all), the n, curve can be as useful as the extinc-
tion curve. However, it seems more convenient to draw both the extinetion curve
and the n, curve.!

! There is no need to discuss uniaxial crystals in this paper, as in these the optic
axis can be determined very easily from an extinction curve: the equatorial curve
is a great circle and the optic axis is its pole (Joel, 1950; Joel and Muir 1958a).
The optic axis lies on the polar curve. The n, curves, which can be obtained as
explained above, are circles centred around the optic axis.
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In figs. 3, 4, 5, and 6 of this paper the point F, has been chosen in the centre of the
projection following the suggestion by Tocher (1962) and Fisher (1962). But there
is no fundamental difference between the extinction curves plotted with F, in the
centre and those with P on the projection circle, or indeed anywhere. Of course,
some graphical constructions become simpler in the first case and others in the
second. (See also Fisher, 1962, p. 660.)

&

Fi1c. 3. Graphical construction of the n, curve (full line), given the extinction curve
(dotted line): on great circles through F, the points ¢ are marked such that PQ =
F,P. Infigs. 3 to 7 the spindle axis F, is in the centre of the stereographic projection.

Location of the principal axes by means of the ng curve

One of the principal axes, o or y, has its projection on the polar curve;
furthermore, this point is the centre of the n, curve that was obtained
by means of the procedure given in the last section. The problem of
locating the projection of this axis is therefore the problem of finding on
the polar curve the point that is the centre of the %, curve. This can be
done as shown in fig. 4. Any point R of the primitive circle is selected
and, with the help of the stereographic net, the points that are half-way
between the intercepts of the n, curve with the great circles through R
are marked. The line joining these points cuts the polar curve at the
desired point y (or «).

The accuracy in the location of y (or «) can be increased by repeating the out-
lined operation for several points R, R,, etc. on the primitive circle (fig. 5). Actually,
any point in the projection (except the point Fy itself) can be taken as R, but the
construction is simpler if it is taken on the primitive. Furthermore, the locus of
the midpoints need only be drawn in the neighbourhood of the polar curve; and
the points B may be selected so as to obtain intersections at favourable angles, and
also so that the points of the », curve that are used will correspond to the sharper
experimental extinction positions.
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Next the other two axes must be located. It is clear that the simplest
way of achieving this is to draw the great circle perpendicular to the
recently determined axis y (or o). This great circle will intersect the
equatorial curve in general in three points and two of these will be mutu-
ally perpendicular; these are the other two axes 8 and « (or y).

R

/)
=4

—

Fics. 4 and 5. Fig. 4 (left). Determination of the centre of the 5, curve (full line):

great circles through any point R intersect the n, curve, and the midpoints between

these intersections are marked; the locus of these midpoints is the line M3, and

the centre of the n, curve, in this case the point y, is found as the intersection of M 3

with the polar curve (dotted line). Fig. 5 (right). Procedure for refining the loca-

tion of y (or &) on the polar curve: the two loci for the midpoints, relative to R,
and R,, are shown (R, is the point R of fig. 4).

The accuracy in locating these two axes can be considerably increased
if one applies to them—or at least to one of them—the same procedure
as was used for obtaining the first of the three axes. The points R can
be the same as before but they need not be. They are chosen so as to give
intersections at favourable angles, using if possible the more accurate
parts of the n, curve (see above); again the midpoints need be located
only in the regions where the two axes have already been approximately
found; fig. 6 shows an example.

It is now guite simple to decide which of the two axes on the equatorial
curve is B. It has already been pointed out (Joel and Garaycochea,
1957) that the polar curve stretches more towards the 8 axis, but this is
not always very sensitive. The n, curve, on the other hand, shows this
effect clearly: its maximum diameter points directly to 8 and its mini-
mum one points to o (ory). This means that, in theory at least, the actual
positions of B and « (or y) could be determined as the intersections of the
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equatorial curve with the two symmetry planes of the n, curve, that is,
with its maximum and minimum diameters; but this is generally less
accurate than the above procedures.

The optic axial plane ay has thus been located, but it is not possible
to decide from the extinction curve alone which is « and which is y;
some additional measurements or observations (or some knowledge of

R

VAN
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Fic. 6. Location of the two principal axes on the equatorial curve. The procedure
is similar to that of figs. 4 and 5. MM determines 8 and M'M’ determines «.

the crystal that is being examined, for example, its optical sign) would
be required to decide it. For instance, with a compensating plate one
could find out whether the vibrations of the polar curve are slower or
faster vibrations (have higher or lower refractive indices) than those of
the equatorial curve, which would assign y or « respectively to the polar
curve. Or, for instance, one could compare the refractive index of the
immersion liquid with those of the crystal along the equatorial curve: if
the latter increase towards f, then y is on the polar curve.

Having thus determined the orientation of the ellipsoid, it is possible
to proceed to determine graphically the directions of the two optic
axes—and hence the value of 2V—with either of the methods by Wilcox
(1959, p. 1290; 1960) or Tocher (1962); or to calculate 2V with any of
the formulae given by Garaycochea and Wittke (1963). However, a
mathematical study of the n, curve led to an interesting method for
determining 2V which has the advantage that its accuracy—which
depends of course on the experimental errors in the extinction curve—
is independent of the possible errors in the location of «, 8, . Thisis so
because it does not require the positions of «, B, y to be known in
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advance, although the procedure is faster if one knows roughly the
position of ¢ (or «) on the polar curve, which, as follows from what has
been said here, is always easy. This new method for determining 2V,
which requires no more than the measurement of the maximum and
minimum diameters of the n, curve (it certainly does not require any
refractive index measurements), is explained in the next section.

Determination of 2V in terms of the two principal diameters of the ny curve

An extinction curve is completely determined by the relative direc-
tions of the spindle-stage axis Py and the optic axes of the crystal (Joel
and Garaycochea, 1957, page 400). It follows that the corresponding
ny curve is also completely determined once the relative directions of
the two optic axes and the spindle-stage axis are fixed. It was thought
worthwhile, therefore, to search for a means of determining 2V once the
ng curve was known. It should be remembered that the #, curve is
obtained easily and quickly from the extinction curve, or even directly
from the extinction readings on the microscope, without having to locate
any of the axes o, 8, y.

A mathematical study of the ny curve showed that its two principal
diameters (maximum 2 ; minimum 2¢) are related by a formula that
involves the angle 2V. This formula is (the proof will be found in the
appendix): cos 'V, = sin{/sinyn where V. is the angle between one of
the optic axes and that axis of the ellipsoid (= = « or y) that lies on the
polar curve. The angles ¢ and 7 (fig. 7) are measured with the stereo-
graphic net, and the angle V, is then calculated by the above formula.

This procedure does not require the points a, B, ¥ to be known in advance; but
the measurements will be done much faster if they are known, even if only approxi-
mately. Indeed, if the principal axis (7r) on the polar curve has been located, then
one knows that the diameters to be sought must all pass through this point; and,
as it is so easy to locate this point (see above), it would seem advisable to do so.
Furthermore, if the other two principal axes, on the equatorial curve, have been
located, then they determine the directions in which the two diameters of the
spherical ellipse have to be measured. However, the value of each of these two
diameters—though not always their direction—can be obtained with the same
accuracy (but not so quickly) if the axes on the equatorial curve have not been
previously located. It isin any case advisable to measure the diameters 2¢ and 2y
over a reasonable range around the minimum and maximum respectively; this
will give a more reliable result as it cancels out local imperfections of the n, curve.
Also, one can measure diameters from points near the axis = and finally choose the
one that gives the highest value of 4 and the lowest value of £, keeping in mind
that the two principal diameters should bisect each other and be mutually per-
pendicular.

The accuracy of this determination of 2V is limited only—apart from drawing
errors—by the quality of the extinction curve, and is unaffected by errors in the
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location of «, B, y. This accuracy can be increased if—apart from the usual pre-
cautions such as having the crystal immersed in a liquid of appropriate refractive
index—the points that correspond to sharp extinctions are given a special mark on
the projection and more weight is given to these points when drawing the #, curve.
If not only the value of 2V but also the directions of the optic axes 4; and 4,
are required, then this value of 2V can be combined with the determination of the
principal axes of the ellipsoid (see above).

Fia. 7. Example of a determination of 2V with the n, curve: barite (BaSO,).

Dotted line, extinction curve; full line, n, curve. ¢ = 70°, y = 81:5°; calculated

value of 2V, 36-3°. The circular sections (broken line) and the optic axes (4 and 4)
have been added afterwards.

It will be remembered that without some additional observations,
measurements, or comparisons we would not be able to know which of
the two bisectrices is « and which is . But the optic axes are, neverthe-
less, determined without any ambiguity as the above formula gives
unambiguously the angle V that each of them forms with the bisectrix
that has been located on the polar curve () ; means of deciding whether
this is a positive or a negative bisectrix have been indicated above.

Example and discussion

Fig. 7 shows an application of the #, method to a crystal of baryte,
one of several examples that were tried. Working with red light,
£ = 70°, 7 = 81-56°, and from the above formula 2V = 36-3°. According
to Palache ef al. (1951, p. 410) the angle is 36-5° for red light. With



688 N. JOEL ON

the same extinction curve 2V was also calculated by means of
formulae (10), (17), and (20) of Garaycochea and Wittke (1963); each
of these three formulae require different angular measurements on the
projection. The results were 36-6°, 36-3°, and 36-6° respectively. In
this example special efforts were made to obtain a consistently good
extinction curve, which accounts for the good result. A few other
extinction curves——with their 74 curves—were obtained in various other
settings of the same crystal, that is in different positions of the spindle
axis relative to the optic axes of the crystal. These measurements were
done in a routine fashion, and their #, curves led to values of 2V between
35-5° and 37-5°.

One can test the effect that errors A¢ and Ay in £ and 4 may have in a particular
case on the calculated value of V_, by recalculating ¥V, with ¢+ A¢ and n-+ Ay (the

error AV is greatest when A¢ and Ay have opposite signs). A general expression
can be obtained, however, by differentiating the above equation, to give

AV, = (cos n sin § Anp—sin 1 cos £ Af)/sin®ysin V.

One gets a useful formula if one assumes the errors A¢ and Ay to have the same
absolute value, say e. The absolute value e, of the error in V_ will then be:

€, = esin(yT-£)/sin?y sin V.

with the negative sign if A¢ and Ay have the same sign.

From this formula it follows that when the n, curve has a diameter 2y approaching
180° and comes to be close to the circular sections (this happens when the spindle-
stage axis P, is close to a circular section, that is, nearly perpendicular to one of the
optic axes), then the maximum error ¢, in the angle ¥, is approximately equal to ¢;
and that the error ¢, is greater when one is dealing with a small n, curve. In practice,
however, some of the extinction settings in the former case will be unsharp (when
one of the optic axes becomes nearly parallel to the microscope axis). It is therefore
advisable, in general, unless special care is taken over the measurements, to make a
compromise between a large and a small n, curve. By remounting the crystal on the
spindle stage in a different orientation it is possible to obtain a different n, curve.
Actually, this was achieved very conveniently, and also any direction in the
crystal within a range of about 30° could be set parallel to the rotation axis of the
instrument without unmounting the crystal, by means of a modified spindle stage
designed by Villarroel (1964). On the other hand, in some cases the 7o method can
be used advantageously with the universal stage as well (Muir and Joel, 1964).

Conclusion

It would be difficult to make a general assessment of the relative
merits of the various ways in which extinction curves have been used
to date for determining the principal axes of the ellipsoid or the optic
axes of a biaxial crystal mounted on a spindle stage. However, the
main interest of the present method—in which the ny curves are used—
derives from the fact that the angle 2V can be obtained quite simply and
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quickly without measuring refractive indices, without trial and error
procedures, and without having to rely on the location of the axes «,
B, y or of the optic axial plane. Furthermore, an additional advantage
of the ny method is that as the experimental n, curve should be an
ellipse (a spherical ellipse), it becomes possible to check the quality of
the experimental extinction curve by checking how much the n, curve
conforms to a spherical ellipse. The first thing to do is to see if it actually
has two symmetry planes (the principal diameters). Furthermore, one
can not only check the average quality of the extinction curve, but also
select its good parts from the bad ones.

Finally, it is important to emphasize that the various interesting
properties of the extinction curves have the effect that in many aspects
the different approaches complement each other, in as much as they
provide opportunities for checking the experimental results and refining
the graphical determinations.
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APPENDIX
Analytical proof of Theorem 3 (see fig. 1)

With the notation used by Joel and Garaycochea (1957), taken from Wilson (1943),
we have—on a sphere of unit radius—that the equation of a point @ on the n,
curve, or equivibration curve through F,, is:

q4.P.q=r1,P.r,=n;* (1)

where g and ry are the unit vectors that define the positions of the points @ and Fy;
@ is the dyadic ® = a2ii+B%j+y2kK; «, B, y are the principal refractive indices
of the crystal; and =, is the constant refractive index associated to all the vibration
directions such as Q.

A point P, at the end of a unit vector r, that is on the same great circle as F, and
@ and at the same angular distance from both (fig. 1), is given by:

r = Ar,;+pq
r.q=r.r, . (2)
rr=q=ri=1

From these equations the parameters A and p are determined, and the relation
between r and q becomes:

q = —Ty+2(r,.1r)r. (3)
This expression for q is now introduced in equation (1) because @ must be on the
. Th It i
7y CUTVe e result is (r.®.1)(r.17) = r.9.10, @)

ZZ
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which is precisely the equation of the extinction curve (Joel and Garaycochea, 1957,
page 405, formula 5).
The principal diameters 2¢ and 2v of the ny curve, and the formula for cos V.
The dyadic € can be written in the form
® = BI—§(4—C)a,a,+a,4a,), (8)

B

Fia. 8. Diagram to illustrate the derivation of the formula for cos V, (the angle
between either optic axis and the bisectrix that lies on the polar curve).

where 4 = o2, B = 72, (' = y2; &, and a, are unit vectors parallel to the two
optic axes of the crystal. The equation of the extinction curve becomes, by intro-
dueing (5) into (4) (Garaycochea and Wittke, 1963):

2(a;.1)(@,.1)(r.T) = (2;.1)(2,.T)+(2,.To)a,.T), (6)
and the equation of the n, curve becomes, by combining (5) and (1),
(2;.9)(@;.9) = (a;.1,)(a;.1) = (B—N)/(4—0), (M
where N = ny %
Equation (7) can also be written
cos ¥; cos ¥, = (B—N)j(4—C), (8)

where ', and W, are the angles between any vibration direction q of the n, curve
and each of the optic axes a, and a, of the crystal.

The spherical ellipses defined by equations 7 or 8 close around y if B > ¥ > C,
(B < my <y), and around « if 4 > N > B, (a < n, < B). We will assume in the
following analysis—without any loss in generality—that the principal axis on the
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polar curve is y, and we are dealing, therefore, with a n, curve centred around V.
The constant (B— N)/(4—C) in equations (7) and (8) is thus positive in this case.

It can be shown that the maximum diameter of this », curve is in the By plane
and the minimum diameter is in the «y plane. They can be obtained quite simply
from equation (8). Let their lengths be 2 (maximum diameter) and 2¢ (minimum
diameter). To get a formula for 7 let us consider point F in fig. 8. In the triangle
AyyF:

cos' U’ = cos ¥, cos g 9)
and the value of cos 't can be obtained by setting V', = ¥, = ¥ in equation (8).
cos V"2 = (B—N)/(4—0). (10)

As the optic axial angle 2V, is known to be given by
cos’V, = (B—O)(4--C) (11)
it follows that cos?y = (B—N)/(B—0). (12)

To get now a formula for £, let us consider point  in fig. 8; equation (8) takes for

it the form
cos(V,,—é€)eos(V,+£) = (B—N)(4—C) (13)

and it follows that cos?V,+-cos¥—1 = (B—N)[(4—0) (14)
and that, combining this with (11)
cos?¢ = (A—N)[(A—0). (15)

Equations (12) and (15) give the required expressions for the semi-diameters »
and £, and combining them with equation (11}, we can eliminate first N and then
4, B, and C, and finally write an expression for V, in terms of ¢ and :

cos V,, = sin ¢fsin . (16)

If the principal axis of the indicatrix that lies in the polar curve happens to be «,
we arrive at exactly the same expression for cos V,, and we can therefore combine
them and write: . .
cos ¥V, = sin éfsiny (17)

which is the formula used above for determining the optic axial angle 2V.

Equation (17) could also be proved by making use of the curve defined by the
directions of the wavenormals associated with a given refractive index n,. This
curve is also an ellipse on the sphere of unit radius, its foci being precisely the points
A; and 4,; and it can be shown that it is the reciprocal of the n, curve. The lengths
of its two semi-diameters ¢ and b are thus the complements of £ and », and they are
related to V, (the distance between one focus and the centre) by: cos @ = cos b
cos V.
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