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Determinat ion of 2 V  f rom one extinction curve and its 

related n o curve 
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Centro de Invest igaciones de Cristalografia, Ins t i tu to  de Fisica y Mate-  

ms Univers idad  de Chile, Casilla 2777, Santiago,  Chile 

[Taken as read 28March 1963] 

Summary. :From the extinction curve of a biaxial crystal mounted on a spindle 
stage (or one-axis stage goniometer), the related n 0 curve can be derived and drawn 
on the stereogram. The n 0 curve is the equivibration curve--or constant-refractive~ 
index curve--that goes through the projection P0 of the spindle-stage axis. After 
the principal diameters (maximum 27 and minimum 2~) of the n o curve have 
been measured, the angle 2V may be calculated by means of the formula cos 
V = sin ~/sin V. This method can also be used for determining--or refining--the 
directions of the principal axes a, [3, u 

T H E  use of ext inc t ion  curve  methods  for de termining the  orien- 

ta t ion  of the  optical  indicat r ix  of small  crystals has been described 

by  several authors  (Joel, 1950 and 1951 ; Joe l  and Garaycochea,  1957 ; 

Joe l  and Muir, 1958a, b ; Wilcox,  1959 ; Fisher,  1962). 

Wilcox (1959, ]960) has given a graphical  procedure by  which i t  is 

possible to determine,  by  successive trials, the  va lue  of  2V and the  

directions of the  optic axes of a biaxial  crystal  moun ted  on a spindle 

stage, using an exper imenta l  ex t inc t ion  curve. This procedure requires 

t ha t  the  directions of the  principal  axes 1 a, D, ~/ of the  indicat r ix  be 

determined first, also f rom the  ext inc t ion  curve ; bu t  of the  pair  a, u one 

need not  know which is a and which is y. 

Tocher (1962) has developed an interes t ing me thod  for locat ing the  

directions of the  two optic axes using ext inct ion (or vibrat ion)  direc- 

tions, thus  proving tha t  Joe l  and Muir (1958a, p. 876) were ra ther  pessi- 

mistic when they  though t  t h a t  ' the  positions of the optic  axes cannot  

be located direct ly by  the  ext inc t ion  curve  method ' .  Tocher 's  me thod  is 

1 The principal axes of the indicatrix are, of course, vectors, having both direc- 
tion and magnitude. Many authors employ sepaffate symbols: X, Y, Z for the 
directions, and a, fl, ? (or iY~, N~, N?, or Nx, Ny, s or ...) for the magnitudes of 
the vectors a, [3, y. The Mineral Data Commission of the International Mineralo- 
gical Association has recommended that a, fl, ? be used both for the magnitudes 
and for the directions of the axes, the precise connotation being given by the 
context; bold-face type (a, [3, y) will be used when an emphasis on the vector 
status is appropriate--(Ed.). 
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a graphical construction based on the Biot-Fresnel theorem, and it 
requires the optic axial plane au to be determined first: this he does from 
the extinction curve. 

Garaycochea and Wittke (1963) have recently deduced a few simple 
formulae from which the angle 2V may be calculated after having 
determined from the extinction curve the directions ~, fi, y. As their 
formulae require only the values of a few angular distances, which are 
read off the projection with a stereographic net, they are able to avoid 
making further graphical constructions for the determination of 2V 
once the extinction curve has been drawn and the a, fl, ~ axes have been 
located. 

As the errors in the location of one or more of the three principal axes 
may affect the determination of the optic axes, it was thought of interest 
to minimize the errors in the former, or if possible, to devise a procedure 
by which the optic axes--or at least the value of 2V--could be deter- 
mined directly from the extinction curve of a biaxial crystal mounted on 
a spindle stage (or one-axis stage goniometer) without havfllg to locate 
first a, fl, ?. This turned out to be possible and even quite simple. 

The present paper consists of five sections and an appendix; in the 
first section the relation between the extinction curve and its n o curve--  
the equivibration curve through P0--is explained. The second section 
deals with the procedure for obtaining the n o curve given the extinction 
curve. The third section gives an alternative technique for locating the 
three principal axes of the ellipsoid using the n o curve ; this is as simple 
as the one first developed by Joel and Garaycochea (1957), it is capable 
of refinement and gives a better check of the accuracy achieved, and it 
makes easier the identification of the fl axis. Furthermore, no 'ghost'  
axes are involved. 1 In the fourth section a very simple formula--related 
to the no curve defined in the first section--is given, with which it is 
possible to calculate the value of the optic axial angle 2V without hay- 
ing to determine first the orientation of the ellipsoid, and without 
measuring refractive indices. An example and some discussion are 
given in the fifth section, while the mathematics of the problem are 
summarized in the appendix. 

On the other hand, using a different approach, which is in fact a 
generalization of Tocher's (1962) method, Joel (1964) has developed 
a graphical construction that  leads to the direct determination of the 
two optic axes--and consequently the three principal axes from only 

1 I t  should be emphasized, however, that  the ghost triangle has never, so far, 
caused any trouble, in whatever way the pro~ected extinction curves are drawn. 
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four measured extinctions.  This construct ion is ra ther  lengthy,  and  i t  is 
ma in ly  of theoretical  interest  ; b u t  it  may  be useful in cases where only a 
few reliable ext inct ions can be measured and  consequent ly  no t  all of the 
ext inct ion curve is available. 

Re la t i on  between the ex t inc t ion  curve  a n d  the n o curve  

Ext inc t ion  curves have various geometrical  properties and,  among 
others, the  following theorems hold: 

T h e o r e m  1. I f  in a stereographic projection P0 represents the  direction 
of the  ro ta t ion  axis of the spindle stage, and  one considers great  circles 
through P0, then  the ext inct ion curve is the locus of the points  P t ha t  
are midway  between consecutive intercepts  of these great  circles with 
the circular sections of the ellipsoid (Joel and  Garaycochea, 1957). 

T h e o r e m  2. The ext inct ion curve is the locus of the points  of t angency  
between those great  circles through P0 and  successive equiv ibra t ion  
curves 1 (Joel, 1951). 

These equivibra t ion cu rves - - the  loci of v ib ra t ion  directions (not pro- 
pagat ion  directions) in the crystal  tha t  have the  same refractive index n 
- - a r e  ellipses on a sphere (spheroconics) t ha t  close a round  the axes a and  
a respectively s if a ~ n ~ fi, and  a round the axes u and  ~ iffi ~ n ~ ~, ; 
if n = a (or?) the curves reduce to a pair of points,  a and  & (or u and  ~/) ; 
and  if n = fi they  coincide with the two great  circles t ha t  represent  the  
circular sections of the ellipsoid. 

T h e o r e m  3. The ext inct ion curve is the locus of the points P t ha t  are 
midway  between consecutive intercepts of the great  circles th rough 
Po wi th  the equivibra t ion curve t ha t  goes th rough Po (fig. 1). This 
par t icular  equiv ibra t ion  curve we shall call the n o curve, and  i t  is the  
locus of the points  t ha t  represent  v ibra t ion  directions in the crystal  for 
which the associated wave has a refractive index equal to n o. 

In the next section it will be explained how the n o curve may be obtained from 
the experimental extinction curve for the purpose of locating the points a, fl, and ~, 
or calculating the angle 2V. An analytical proof of Theorem 3 is given in the 
appendix ; but one can also approach the problem in this way: a diametral section 
of the ellipsoid through Po is an ellipse as shown in fig. 2. The vibration directions 
(extinction directions) OP and OP' are parallel to the two principal axes of this 
ellipse. I t  follows from symmetry considerations that if we choose Q such that the 
lengths OQ and OP o are equal, then the angles P O P  o and POQ are equal too (and 

1 The name equivibration curve will be adopted following Wright (1923) and 
Phemister (1954) as it is less ambiguous than that of constant refractive index curve 
used by Joel (1951). 

Where appropriate, opposite ends of a diameter of the indicatrix are distin- 
guished as a, &, P,/~, &c. 
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similarly, the angles QO"~P ' and/5o0~ '  are equal). But Po, Q, t50, and Q belong to 
the equivibration curve that  goes through Po, or in other words, the n o curve ; and P 
and P '  belong to the extinction curve. Theorem 3 is thus proved. 

Graphical construction of the n o curve given the extinction curve 

To conslbruct t h e  ~0 cu rve  once t h e  e x t i n c t i o n  c u r v e  h a s  b e e n  d r a w n  

is n o w  qu i t e  s imple  (fig. 3). W i t h  t h e  he lp  of  a s t e r e o g r a p h i e  n e t  p o i n t s  

s u c h  as  Q are  d e t e r m i n e d  on  g r e a t  circles t h r o u g h  P0 so t h a t  t h e  po la r  

c u r v e  (or t h e  e q u a t o r i a l  curve ,  as  t h e  case m a y  be) b i sec t s  PoQ. 

Q 

FIGS. 1 and 2. Fig. 1 (left). The no curve (equivibration curve through P0) in stereo- 
graphic projection ; points P halfway between consecutive intercepts of the great 
circles through Po with the n o curve are points of the extinction curve. Fig. 2 (right). 
Diametral section of the ellipsoid through P0. OP and OP': vibration directions ; 

P0, Q, P0 and ~): points of the n o curve. 

For the purpose of drawing the n o curve, it is quite helpful, but  not necessary, to 
proceed as follows : when plotting on the stereogram the pairs of points P and P '  of 
the extinction curve (determined by the extinction angles PoP = 0, PoP' = 90~ 
the point at an angular distance 20 from Po (or 180~ as the case may be) 
should be plotted as well on the same great circle, as this is a point Q of the n o 
curve. Indeed, as was pointed out by Wittke (1962), it can be seen that in this way 
one could actually plot directly the n o curve without going through the intermediary 
stage of drawing the extinction curve. And, as is shown in the present paper, the 
three principal axes and the two optic axes, which can be derived from the extinc- 
tion curve, can also be derived directly from the n o curve ; in this, and possibly also 
in other aspects (though certainly not all), the n o curve can be as useful as the extinc- 
tion curve. However, it seems more convenient to draw both the extinction curve 
and the n o curve. 1 

1 There is no need to discuss uniaxial crystals in this paper, as in these the optic 
axis can be determined very easily from an extinction curve: the equatorial curve 
is a great circle and the optic axis is its pole (Joel, 1950; Joel and Muir 1958a). 
The optic axis lies o n  the polar curve. The n o curves, which can be obtained as 
explained above, are circles centred around the optic axis. 
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In figs. 3, 4, 5, and 6 of this paper the point P0 has been chosen in the centre of the 
projection following the suggestion by Tocher (1962) and Fisher (1962). But there 
is no fundamental difference between the extinction curves plotted with P0 in the 
centre and those with P0 on the projection circle, or indeed anywhere. Of course, 
some graphical constructions become simpler in the first case and others in the 
second. (See also Fisher, 1962, p. 660.) 

/ 
FIG. 3. Graphical construction of the n o curve (full line), given the extinction curve 
(dotted line) : on great circles through P0 the points Q are marked such that  PQ 
PoP. In figs. 3 to 7 the spindle axis P0 is in the centre of the stereographic projection. 

Location of the principal axes by means of the n o curve 

One of t he  p r inc ipa l  axes,  a or y, has  i ts  p ro jec t ion  on  t h e  polar  cu rve  ; 

fu r the rmore ,  th i s  p o i n t  is t he  cen t re  of t he  n o curve  t h a t  was o b t a i n e d  

b y  means  of t he  p rocedure  g iven  in t he  las t  sect ion.  The  p rob l em of 

loca t ing  t he  p ro jec t ion  of th i s  axis  is there fore  t h e  p r o b l e m  of f inding on 

the polar curve the point that is the centre of the n o curve. This can be 

done  as shown in fig. 4. A n y  po in t  R of the  p r imi t i ve  circle is selected 

and,  wi th  t he  help  of t he  s te reograph ic  net ,  t h e  po in t s  t h a t  are  ha l f -way  

be tween  the  i n t e r c e p t s  of t he  n o curve  w i t h  t he  g rea t  circles t h r o u g h  R 

are marked .  The  l ine jo in ing  these  po in t s  cu ts  t h e  po la r  cu rve  a t  t he  

desired po in t  7 (or a). 

The accuracy in the location of y (or a) can be increased by repeating the out- 
lined operation for several points R1, Re, etc. on the primitive circle (fig. 5). Actually, 
any point in the projection (except the point P0 itself) can be taken as R, but the 
construction is simpler if it is taken on the primitive. Furthermore, the locus of 
the midpoints need only be drawn in the neighbourhood of the polar curve; and 
the points R may be selected so as to obtain intersections at favourable angles, and 
also so that  the points of the n o curve that  are used will correspond to the sharper 
experimental extinction positions. 
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Next the other two axes must be located. I t  is clear that  the simplest 
way of achieving this is to draw the great circle perpendicular to the 
recently determined axis 9' (or a). This great circle will intersect the 
equatorial curve in general in three points and two of these will be mutu- 
ally perpendicular ; these are the other two axes fl and a (or ~). 

D 

R~ 

FIGS. 4 and 5. Fig. 4 (left). Determination of the centre of the n o curve (full line): 
great circles through any point R intersect the n o curve, and the midpoints between 
these intersections are marked; the locus of these midpoints is the line MM, and 
the centre of the n o curve, in this case the point 9', is found as the intersection of MM 
with the polar curve (dotted line). Fig. 5 (right). Procedure for refining the loca- 
tion of 9' (or a) on the polar curve : the two loci for the midpoints, relative to R I 

and R2, are shown (R 1 is the point R of fig. 4). 

The accuracy in locating these two axes can be considerably increased 
if one applies to them--or  at least to one of them-- the  same procedure 
as was used for obtaining the first of the three axes. The points R can 
be the same as before but they need not be. They are chosen so as to give 
intersections at favourable angles, using if possible the more accurate 
parts of the n o curve (see above) ; again the midpoints need be located 
only in the regions where the two axes have already been approximately 
found; fig. 6 shows an example. 

I t  is now quite simple to decide which of the two axes on the equatorial 
curve is ft. I t  has already been pointed out (Joel and Garaycochea, 
1957) that  the polar curve stretches more towards the fl axis, but  this is 
not always very sensitive. The n o curve, on the other hand, shows this 
effect clearly: its maximum diameter points directly to fl and its mini- 
mum one points to a (or 9'). This means that, in theory at least, the actual 
positions of#  and a (or 9') could be determined as the intersections of the 
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equatorial curve with the two symmetry planes of the n o curve, tha t  is, 
with its maximum and minimum diameters; but  this is generally less 
accurate than the above procedures. 

The optic axial plane a:r has thus been located, but it is not possible 
to decide from the extinction curve alone which is a and which is y ;  
some additional measurements or observations (or some knowledge of 

R 

f 
FIc .  6. Location of the  two principal  axes on the  equatorial  curve. The procedure 
is similar to t ha t  of figs. 4 and 5. M M  determines fi and M'M" determines a. 

the crystal that  is being examined, for example, its optical sign) would 
be required to decide it. For instance, with a compensating plate one 
could find out whether the vibrations of the polar curve are slower or 
faster vibrations (have higher or lower refractive indices) than those of 
the equatorial curve, which would assign 7 or ~ respectively to the polar 
curve. Or, for instance, one could compare the refractive index of the 
immersion liquid with those of the crystal along the equatorial curve : if 
the latter increase towards fl, then 7 is on the polar curve. 

Having thus determined the orientation of the ellipsoid, it is possible 
to proceed to determine graphically the directions of the two optic 
axes--and hence the value of 2V--with either of the methods by Wilcox 
(1959, p. 1290; 1960) or Tocher (1962); or to calculate 2V with any of 
the formulae given by Garaycochea and Wit tke  (1963). However, a 
mathematical study of the n o curve led to an interesting method for 
determining 2V which has the advantage that  its accuracy--which 
depends of course on the experimental errors in the extinction curve- -  
is independent of the possible errors in the location of a, ]3, y. This is so 
because it does not require the positions of a, fl, y to be known in 
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advance ,  a l t h o u g h  t h e  p rocedure  is fas te r  if  one knows  rough ly  t he  

pos i t ion  of y (or a) on  t he  po la r  curve,  which,  as follows f rom w h a t  ha s  

been  said here,  is a lways  easy. This  new m e t h o d  for de t e rmin ing  2V, 

which  requi res  no  more  t h a n  t he  m e a s u r e m e n t  of t he  m a x i m u m  a n d  

m i n i m u m  d i ame te r s  of t h e  n o curve  (i t  c e r t a in ly  does no t  requi re  a n y  

re f rac t ive  index  meas u r em en t s ) ,  is expla ined  in t he  n e x t  section.  

Determination of 2V in terms of the two principal diameters of the n o curve 

A n  ex t inc t i on  cu rve  is comple te ly  d e t e r m i n e d  b y  t he  re la t ive  direc- 

t ions  of t he  sp indle-s tage  axis  Po and  t he  opt ic  axes  of t he  c rys ta l  (Joel  

a n d  Garaycochea ,  1957, page  400). I t  follows t h a t  t he  cor responding  

n o curve  is also comple te ly  d e t e r m i n e d  once t h e  re la t ive  d i rec t ions  of  

t he  two opt ic  axes  a n d  t he  sp indle-s tage  axis  are  fixed. I t  was t h o u g h t  

wor thwhi le ,  therefore ,  to  sea rch  for a means  of d e t e r m i n i n g  2V once t he  

n o cu rve  was known.  I t  shou ld  be r e m e m b e r e d  t h a t  t he  n o curve  is 

o b t a i n e d  easily a n d  qu ick ly  f r o m  t he  e x t i n c t i o n  curve,  or even  d i rec t ly  

f rom the  ex t inc t i on  read ings  on  t he  microscope,  w i t h o u t  h a v i n g  to  loca te  

a n y  of the  axes  a, fi, y. 

A m a t h e m a t i c a l  s t u d y  of t he  n o curve  showed  t h a t  i ts  two pr inc ipa l  

d i ame te r s  ( m a x i n m m  2V; m i n i m u m  2~:) are r e l a t ed  b y  a fo rmula  t h a t  

involves  t he  angle  2V. This  fo rmula  is ( the p roof  will be  found  in t he  

a p p e n d i x ) :  cos V~ = sin f / s i n  V where  V~ is t he  angle  be tween  one of 

t he  opt ic  axes  a n d  t h a t  axis  of t he  ell ipsoid (~r = a or y) t h a t  lies on t h e  

polar  curve.  The  angles  ~ a n d  V (fig. 7) are m e a s u r e d  w i t h  t he  stereo- 

g raph ic  net ,  a n d  t h e  angle  V .  is t h e n  ca lcu la ted  b y  t he  above  formula .  

This procedure does not require the points ~, fi, y to be known in advance; but 
the measurements will be done much faster if they are known, even if only approxi- 
mately. Indeed, if the principal axis (Tr) on the polar curve has been located, then 
one knows that  the diameters to be sought must all pass through this point; and, 
as it is so easy to locate this point (see above), it would seem advisable to do so. 
Furthermore, if the other two principal axes, on the equatorial curve, have been 
located, then they determine the directions in which the two diameters of the 
spherical ellipse have to be measured. However, the value of each of these two 
diameters--though not always their direction--can be obtained with the same 
accuracy (but not so quickly) if the axes on the equatorial curve have not been 
previously located. I t  is in any case advisable to measure the diameters 2~ r and 2V 
over a reasonable range around the minimum and maximum respectively; this 
will give a more reliable result as it cancels out local imperfections of the n o curve. 
Also, one can measure diameters from points near the axis rr and finally choose the 
one that  gives the highest value of V and the lowest value of ~r keeping in mind 
that  the two principal diameters should bisect each other and be mutually per- 
pendicular. 

The accuracy of this determination of 2V is limited only--apart  from drawing 
errors--by the quality of the extinction curve, and is unaffected by errors in the 



DETERMINATION OF 2V 687 

location of a, fi, y. This accuracy can be increased if--apart  from the usual pre- 
cautions such as having the crystal immersed in a liquid of appropriate refractive 
index--the points that  correspond to sharp extinctions are given a special mark on 
the projection and more weight is given to these points when drawing the n o curve. 
If  not only the value of 2V but also the directions of the optic axes A 1 and A 2 
are required, then this value of 2V can be combined with the determination of the 
principal axes of the ellipsoid (see above). 

A ~ . - ' "  

FIG. 7. Example of a determination of 2V with the n o curve: barite (BaSO4). 
Dotted line, extinction curve; full line, n o curve. ~ = 70 ~ ~ = 81.5~ calculated 
value of 2V, 36'3 ~ The circular sections (broken line) and the optic axes (A and A) 

have been added afterwards. 

I t  will be  r e m e m b e r e d  t h a t  w i t h o u t  some a d d i t i o n a l  observa t ions ,  

m e a s u r e m e n t s ,  or compar i sons  we would  n o t  be  able  to  k n o w  which  of  

t he  two bisectr ices  is a a n d  which  is ~. B u t  t he  opt ic  axes  are,  n e v e r t h e -  

less, d e t e r m i n e d  w i t h o u t  a n y  a m b i g u i t y  as  t h e  above  fo rmu la  gives 

u n a m b i g u o u s l y  t he  angle  V t h a t  each  of t h e m  forms  w i th  t he  b i sec t r ix  

t h a t  ha s  been  loca ted  on  t he  polar  cu rve  (~r) ; m e a n s  of dec id ing  w h e t h e r  

th i s  is a pos i t ive  or a nega t ive  b i sec t r ix  h a v e  b e e n  i nd i ca t ed  above .  

Example and discussion 

Fig.  7 shows a n  app l i ca t ion  of t he  n o m e t h o d  to  a c rys ta l  of ba ry t e ,  

one of severa l  examples  t h a t  were t r ied .  W o r k i n g  w i th  r ed  l ight ,  

= 70 ~ ~/ = 81.5 ~ a n d  f rom t he  above  f o r m u l a  2V = 36.3 ~ Accord ing  

to  P a l a c h e  et al. (1951, p. 410) t he  ang le  is 36-5 ~ for r ed  l ight .  W i t h  
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t h e  s a m e  e x t i n c t i o n  c u r v e  2V w a s  also c a l c u l a t e d  b y  m e a n s  o f  

f o r m u l a e  (10), (17), a n d  (20) o f  G a r a y c o c h e a  a n d  W i t t k e  (1963) ; e a c h  

o f  t h e s e  t h r e e  f o r m u l a e  r e q u i r e  d i f f e r en t  a n g u l a r  m e a s u r e m e n t s  on  t h e  

p r o j e c t i o n .  T h e  r e su l t s  were  36.6 ~ , 36.3 ~ , a n d  36"6 ~ r e spec t i ve ly .  I n  

t h i s  e x a m p l e  spe c i a l  e f for t s  were  m a d e  to  o b t a i n  a c o n s i s t e n t l y  g o o d  

e x t i n c t i o n  c u r ve ,  w h i c h  a c c o u n t s  for  t h e  g o o d  r e su l t .  A f e w  o t h e r  

e x t i n c t i o n  c u r v e s - - - w i t h  t h e i r  n o c u r v e s - - w e r e  o b t a i n e d  in  va r i ous  o t h e r  

s e t t i n g s  o f  t h e  s a m e  c rys ta l ,  t h a t  is in  d i f f e r en t  p o s i t i o n s  of  t h e  sp i nd l e  

ax i s  r e l a t i v e  t o  t h e  op t i c  axes  of  t h e  c rys ta l .  T h e s e  m e a s u r e m e n t s  were  

d o n e  in  a r o u t i n e  f a sh ion ,  a n d  t h e i r  n o c u r v e s  l ed  to  va l ue s  of  2V b e t w e e n  

35.5 ~ a n d  37.5 ~ . 

One can test the effect that  errors Af and AV in ~ and ~? may have in a particular 
case on the calculated value of V., by recalculating V. with $+A~r and v §  (the 
error AV is greatest when A~: and A? 7 have opposite signs). A general expression 
can be obtained, however, by differentiating the above equation, to give 

AV~ = (cos ?7 sin ~ A~?--sin ?7 cos ~r A~)/sin~ sin V.. 

One gets a useful formula if one assumes the errors A~r and AV to have the same 
absolute value, say E. The absolute value % of the error in V. will then be: 

% = esin(~]T~C)/sine? 7 sin V~. 

with the negative sign if A~: and AV have the same sign. 
From this formula it follows that  when the n o curve has a diameter 2?7 approaching 

180 ~ and comes to be close to the circular sections (this happens when the spindle- 
stage axis Po is close to a circular section, that  is, nearly perpendicular to one of the 
optic axes), then the maximum error e v in the angle V,r is approximately equal to e; 
and tha t  the error % is greater when one is dealing with a small n o curve. In practice, 
however, some of the extinction settings in the former case will be unsharp (when 
one of the optic axes becomes nearly parallel to the microscope axis). I t  is therefore 
advisable, in general, unless special care is taken over the measurements, to make a 
compromise between a large and a small n o curve. By remounting the crystal on the 
spindle stage in a different orientation it is possible to obtain a different n o curve. 
Actually, this was achieved very conveniently, and also any direction in the 
crystal within a range of about 30 ~ could be set parallel to the rotation axis of the 
instrument without unmounting the crystal, by means of a modified spindle stage 
designed by Villarroel (1964). On the other hand, in some cases the n o method can 
be used advantageously with the universal stage as well (Muir and Joel, 1964). 

Conclusion 

I t  w o u l d  b e  di f f icul t  to  m a k e  a gene ra l  a s s e s s m e n t  of  t h e  r e l a t i ve  

m e r i t s  o f  t h e  v a r i o u s  w a y s  in w h i c h  e x t i n c t i o n  c u r v e s  h a v e  b e e n  u s e d  

t o  d a t e  for  d e t e r m i n i n g  t h e  p r i n c i p a l  axes  of  t h e  e l l ipsoid  or t h e  op t i c  

a x e s  of  a b i a x i a l  c ry s t a l  m o u n t e d  on  a sp ind l e  s t age .  H o w e v e r ,  t h e  

m a i n  i n t e r e s t  o f  t h e  p r e s e n t  m e t h o d - - i n  w h i c h  t h e  n o cu rve s  are  u s e d - -  

d e r i v e s  f r o m  t h e  f a c t  t h a t  t h e  ang le  2V c a n  be  o b t a i n e d  q u i t e  s i m p l y  a n d  
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qu ick ly  w i t h o u t  measu r ing  re f rac t ive  indices,  w i t h o u t  t r i a l  a n d  error  

procedures ,  a n d  w i t h o u t  h a v i n g  to re ly  on  t he  loca t ion  of t he  axes  a, 

fi, ~ or of the  opt ic  ax ia l  plane.  F u r t h e r m o r e ,  a n  add i t i ona l  a d v a n t a g e  

of t h e  n o m e t h o d  is t h a t  as t he  e x p e r i m e n t a l  n o curve  should  be  a n  

ellipse (a spher ica l  ellipse), i t  becomes  possible  to  check t he  qua l i t y  of 

t h e  e x p e r i m e n t a l  ex t inc t i on  cu rve  b y  checking  how m u c h  t he  n o curve  

conforms  to a spher ica l  ellipse. The  first  t h i n g  to  do is to  see if  i t  a c tua l l y  

has  two s y m m e t r y  p lanes  ( the p r inc ipa l  d iameters ) .  F u r t h e r m o r e ,  one 

can  n o t  only  check the  ave rage  qua l i t y  of t he  e x t i n c t i o n  curve,  b u t  also 

select  i ts  good pa r t s  f rom t he  b a d  ones. 

F ina l ly ,  i t  is i m p o r t a n t  to  emphas ize  t h a t  t he  var ious  in t e re s t ing  

p roper t i e s  of t he  ex t inc t i on  curves  h a v e  t he  effect t h a t  in  m a n y a s p e e t s  

t h e  different  approaches  c o m p l e m e n t  each  o ther ,  in  as m u c h  as t h e y  

p rov ide  oppor tun i t i e s  for checking  the  e x p e r i m e n t a l  resul t s  a n d  ref in ing 

t he  g raph ica l  de t e rmina t ions .  
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APPENDIX 

Analytical proof of Theorem 3 (see fig. I) 

With the notation used by Joel and Garaycochea (1957), taken from Wilson (1943), 
we have--on a sphere of unit radius--that the equation of a point Q on the n o 
curve, or equivihration curve through P0, is: 

q. CI~.q = ro. CI~.r o = n~ -2 (1) 

where q and r 0 are the unit vectors that  define the positions of the points Q and P0 ; 
is the dyadic ~ = a-2ii+fl-2jj -k?-~kk ; a, fl, y are the principal refractive indices 

of the crystal; and n o is the constant refractive index associated to all the vibration 
directions such as Q. 

A point P, at the end of a unit vector r, that  is on the same great circle as Po and 
Q and at the same angular distance from both (fig. 1), is given by: 

r = ~tro-kg q 

r . q  = r . ro  J .  (2) 

r e = q 2  = r ]  = 1 

From these equations the parameters ~ and g are determined, and the relation 
between r and q becomes: 

q = - - ro+2( r0 . r  ) r. (3) 

This expression for q is now introduced in equation (1) because Q must be on the 
n o curve. The result is 

(r.  O . r ) ( r . r0 )  = r . ~ . r o ,  (4) 

ZZ 
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which  is p rec i se ly  the  e q u a t i o n  of t he  ex t inc t ion  curve  ( Joe l  and  Garaycochea ,  1957, 
p a g e  405, fo rmula  5). 

The principal diameters 2~ and 27 of the n o curve, and the formula for cos V. 

The  d y a d i c  cI~ can be w r i t t e n  in  t he  form 

= B I - - � 8 9  I a ~ W a  2 a l ) ,  (5) 

FIG. 8. D i a g r a m  to i l l u s t r a t e  t he  d e r i v a t i o n  of  the  fo rmula  for cos V~ ( the  ang le  
be tween  e i the r  op t ic  ax i s  a n d  the  b i sec t r ix  t h a t  l ies on t he  po la r  curve).  

where  A = a -2, B = fl-2, C = ~,-2 ; a t  and  a s are u n i t  vec tors  pa ra l l e l  to  t he  two  
opt ic  axes  of  t he  crys ta l .  The  e q u a t i o n  of the  ex t i nc t i on  curve  becomes,  b y  in t ro-  
duc ing  (5) in to  (4) (Garayeochea  a n d  Wi t t ke ,  1963): 

2(a  1 . r ) ( a  2 . r ) ( r  o . r )  = (a  t . ro)(a 2 . r )  + (a  2 . ro)(a t . r ) ,  (61 

and  the  e q u a t i o n  of the  n o curve  becomes,  b y  combin ing  (5) and  (1), 

( a~ .q ) (a2 .q )  = (a t . ro ) (a2 . ro)  = (B--N)/(A--C),  ( 7 )  

where  N = ~-~.  
E q u a t i o n  (7) can also be w r i t t e n  

cos ~F t cos ~ = (B--IV)/(A--C), (8) 

where  ~ t  a n d  ~ are the  angles  be tween  a n y  v i b r a t i o n  d i rec t ion  q of the  n o curve  
and  each  of  the  opt ic  axes  a t and  a s of the  crys ta l .  

The  spher ica l  el l ipses def ined b y  equa t ions  7 or 8 close a r o u n d  y i f  B > N > C, 
(fl ~<n o < ~ ) , a n d a r o u n d a i f A  > N >  B , ( a  < n 0 < f i ) .  W e  wi l l  assume in  t he  
fol lowing a n a l y s i s - - w i t h o u t  a n y  loss in  g e n e r a l i t y - - t h a t  the  p r inc ipa l  ax i s  on t he  
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polar curve is y, and we are dealing, therefore, with a n o curve centred around ~,. 
The constant (B- -N) / (A- -C)  in equations (7) and (8) is thus positive in this case. 

I t  can be shown that  the maximum diameter of this n o curve is in the fly plane 
and the minimum diameter is in the a~, plane. They can be obtained quite simply 
from equation (8). Let their lengths be 27 (maximum diameter) and 2~ (minimum 
diameter). To get a formula for ~ let us consider point F in fig. 8. In  the triangle 
A2yF: 

coslF ' = cos W cos */ (9) 

and the value of cosY" can be obtained by setting 1F1 = ~F 2 = 1F' in equation (8). 

cos tIZ'~ = (B--  N)/(A -- C). (10) 

As the optic axial angle 2V~ is known to he given by 

cos~V~ = (B--C)/(A--C) (11) 

it follows that cos~v = (B--N)/(B--C).  (12) 

To get now a formula for ~, let us consider point E in fig. 8; equation (8) takes for 

it the form 
cos(Vv--~)cos(Vv~-~) = (B--N) / (A--C)  (13) 

and it follows that cos~W~-cos~--I = (B--N) / (A--C)  (14) 

and that, combining this with (11) 

costs = (A--N) / (A--C) .  (15) 

Equations (12) and (15) give the required expressions for the send-diameters 
and ~, and combining them with equation (11), we can eliminate first N and then 
A, B, and C, and finally write an expression for V,, in terms of ~ and 7: 

cos W = sin ~/sin ~?. (16) 

I f  the principal axis of the indicatrix that  lies in the polar curve happens to be a, 
we arrive at exactly the same expression for cos V,  and we can therefore combine 
them and write: 

cos V~ = sin ~/sin ~ (17) 

which is the formula used above for determining the optic axial angle 2V. 
Equation (17) could also be proved by making use of the curve defined by the 

directions of the wavenormals associated with a given refractive index n 0. This 
curve is also an ellipse on the sphere of unit radius, its foci being precisely the points 
A 1 and A s ; and it can be shown that  it is the reciprocal of the n o curve. The lengths 
of its two semi-diameters a and b are thus the complements of ~ and 7, and they are 
related to V~ (the distance between one focus and the centre) by: cos a = cos b 
cos V~. 
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