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Summary. It is possible to determine the directions of the optic axes of a biaxial 
crystal mounted on a spindle stage--and hence the angle 2V and the directions of 
a, fl, ~,--from only four measured extinction positions. The method is a generaliza- 
tion of the one proposed by Tocher (1962); but in the present procedure it is not 
necessary to determine first the optic axial plane. 

W ILCOX (1959, p. 1290; 1960) and Tocher (1962) have given 
stereographie constructions for determining, by  means of an 

experimentally obtained extinction curve, the optic axes of a biaxial  
crystal  mounted on a spindle stage. They require some previous know- 
ledge of the orientation of the ellipsoid, which is also obtained from the 
extinction curve. 

Wilcox determines first, from the experimental  extinction curve (Joel, 
1950 ; Joel and Garaycochea, 1957), the positions of a, fl, and ), relative 
to the spindle axis P0; and then draws theoretical extinction curves 
using different trial values of the optic axial angle 2V. The correct value 
of 2V is the one tha t  fits best the experimental  extinction curve. 

Toeher's method is a direct one: he locates first, also from the experi- 
mental  extinction curve, the optic axial plane ; and then locates on the 
la t ter  the two points A 1 and A 2 (optic axes) using the Biot-Fresnel  
theorem for two wave-normals and their corresponding vibrat ion direc- 
tions: N1, V1, V'I and N2, V2, V.~ respectively. A 1 and A 2 are deter- 
mined by  the condition tha t  for both waves: A A  1 N V  = A~42 N V  (or 
AA~ NV '  = A.42 NV') .  This graphical construction is in fact quite simple 
and elegant:  and as to its accuracy, Tocher himself says (1962, p. 56): 
'A check on the accuracy of both the above graphical construction and the 
observations may now be made by  ensuring tha t  the optic axes so found 
are symmetrical  with respect to any other wavenormal : vibrat ion set. '  
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A further check is provided by the fact that  if the points a and y have 
been previously located on the optic axial plane, one of them should bi- 
sect the arc A1A 2. If  this does not happen, then the determination of 
A 1 and A 2 is repeated for slightly different positions of % fi, ? until a 
solution is obtained where a and ~, do bisect the optic axial angle (Toeher, 
1962, pp. 57, 58). 

In order to make the accuracy of the location of A 1 and A 2 indepen- 
dent of possible errors in the location of the optic axial plane, it was con- 
sidered of interest to try to generalize Tocher's stereographie method in 
the following way: only the directions of wave-normals (of course more 
than two) and the directions of the corresponding vibrations should be 
used, without assuming anything at all about the optic axial plane. 
Furthermore, it also became of interest to discuss how many experi- 
mentMly recorded extinctions are actually necessary to determine -d 1 
and A 2. 

I t  should be mentioned, before proceeding, that  two further solutions, 
which are quite easy to apply, have recently been given for the problem 
of determining the angle 2V directly from an extinction curve. Garay- 
coehea and Wittke (1964) have studied some further properties of the 
extinction curves and have derived some formulae each of which can 
be used for calculating the value of 2V from measurements made on the 
experimental extinction curve. And Joel (1963) has proposed another 
formula, also for calculating 2V, making use of the n 0 curve (equivibra- 
tion curve through Po), which can be derived from the extinction curve. 
Both these procedures are quite simple, fast, and convenient. The first 
one requires that  the axes a, fi, ? of the ellipsoid be determined prior to 
the calculation of 2 V, while the second one does not. But both of them 
require the complete extinction curve--or at least a good part of i t - -  
which means that  many extinctions (or wave-normal : vibration sets) 
covering a wide angular range, have to be measured and recorded. 

In  the present work an attempt was made to solve the problem of the 
determination of 2V with the smallest possible number of experimental 
extinctions ; this number turned out to be four. 

On the number of experimentally recorded extinctions required for deter- 
mining the optic axes 

Consider a biaxial crystal mounted on a spindle stage (or one-axis 
stage goniometer), which is set with its rotation axis perpendicular to 
the axis of the polarizing microscope. We know that  its extinction curve 
will depend on the relative directions of the two optic axes and the 
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spindle-stage axis (Joel and Garayeoehea, 1957 ; Toeher, 1962). Indeed, 
Garaycochea and Wittke (1963) showed that  on a refit sphere the 
equation of the extinction curve in terms of the three unit vectors al, a2, 
and r0, respectively parallel to the two optic axes and the spindle-stage 
axis, is: 

2(al.r)(a2.r)(ro.r) = (al.ro)(a2.r)+(a~.ro)(al.r),  (1) 

where r is a unit vector from the origin to any point P of the extinction 
curve. 

This equation could be used to determine the vectors a I and a s 

relative to r 0 and the recorded vibration (extinction) directions 1"i, r2, 

.... , rn, . .., provided that a sumcient number of the latter have been 

measured and plotted. Since a I and a s are unit vectors only two com- 

ponents (direction cosines) have to be determined for each of them. 

The number of unknowns is thus four, which means that four indepen- 

dent extinctions have to be measured and plotted, and as the two 
vibration directions associated to any given wave-normal are not in- 
dependent, four different wave-normals are required. The corresponding 
equations are actually unsolvable in practice unless one uses an elec- 
tronic computer. But this is not really necessary because a graphical 
construction can solve the problem, as is shown below. From the purely 
mathematical point of view the problem has many solutions (a finite 
number, however). But from the physical point of view the solution is 
unique: the ellipsoid has only two circular sections. Therefore, if the 
graphical construction leads to a solution, then this is the solution to the 
problem. 

Special eases arise when P0 is on one of the three principal planes O f the 
ellipsoid, on one of the circular sections, or coincides with a, fl, ~, A1, 
o r  A 2. 

Stereographic solution to the problem of locatin 9 the two optic axes from four 
independent measured extinctions 

As was mentioned above, Tocher's (1962) procedure will be applied by 
requiring that  for each of the four waves the two optic axes satisfy the 
relation: A A 1 N i V  i = A A 2 N i V  i (i = 1, 2, 3, 4). 

In order to use this condition for determining A 1 and A 2, one could do 
the following construction (given by Tocher, 1962, p. 55) for each of the 
four waves : 

Consider the great circle N 1 V 1 (or N 1 V'I). Pairs of great circles are 
drawn through N 1 symmetrically disposed to N 1 V 1 (or N 1 V'I), for in- 
stance at intervals of 10 ~ in this first stage. Any pair of these great 
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circles can be called the pair m, where the index m refers to the angular 
distance to N 1 V1 ; so tha t  the pair 20 is the pair of circles tha t  form an 
angle of 20 ~ with the circle N 1 V1, one circle on each side of it. 

A few definitions will be useful for the present discussion. Of any two 
points tha t  are on any pair m (one on each circle of this pair) we shall say 
tha t  they belong to the class M. In  other words, two points belong to 
the class M if the two great circles tha t  join them with N 1 form equal 
angles with N 1 V1. 

The same construction would be required for the other three waves, 
with pairs of great circles symmetric relative to N 2 V~, N 3 V 3, and N 4 V 4. 
The pairs of circles will be labelled n, p, and q respectively, so that,  for 
instance, a pair of points belong to the class Q if they are on a pair of 
circles through N4--one on each - - t ha t  form equal angles with the circle 
iv, v4. 

Of any pair of points that  belong to both class P and class Q we shall 
say tha t  they belong to the class PQ (class PQ is thus the intersection of 
the classes P and Q). Such a pair of points lie on great circles tha t  are 
symmetrical ly located relative both to N a V 3 and to N 4 V 4. These defini- 
tions can be summarized, and generalized, in the following way. Two 
points B and C belong to the class M (or N, P,  or Q) if they satisfy the 
condition A B N  i V i ~ •  V i for i ~ 1 (or i ~ 2, 3, 4) ; they belong 
to the class M N  if they satisfy this condition for the two wave-normals 
i = 1 and 2 ; they belong to the class M N P  if they satisfy it for the three 
wave-normals i ~ 1, 2, and 3 ; and finally to the class MNPQ if they 
satisfy i t  for the four wave-normals (i - 1, 2, 3, 4). 

Consequently, the problem of locating the two points A 1 and A S 
amounts to locating a pair of points tha t  belong to the class MNPQ. 

At first sight it  would seem very difficult to find such a pair of points. 
However, this is not so, and one possible way of finding the solution is as 
follows : 

The grid of circles (fig. 1) through N 1 and N2, and symmetric relative to 
N1 V1 and N 2 V 2 respectively, is drawn at  intervals of 10 ~ They can be 
labelled 0, l ,  2, ..., 8, 9, 8, 7, ..., 1, 0; where 3 and 3 stand for the two 
circles at  30 ~ to either N 1 V 1 or N 2 V 2. N l V 1 and N 1 V' 1 are the circles 
m : 0 and m - 9, while N~ V 2 and N 2 V 2 are the circles n = 0 and 
n --  9. The intersections of any two circles of this grid will have two 
indices and we shall have points such as 08, 23, 46, 57, etc. ; the point 46 
is the intersection of the circle m ~ 4 ( =  - 4 0  ~ with the circle n = 6 
( =  §176 ~ The points 46 and 46 constitute a pair tha t  belongs to the 
class MN, and it  is clear tha t  one can find in the projection an infinity 
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of such pairs of points  of class M N  when both  m and  n cover the range 
0%..90 ~ . 

The next  step is to use the thi rd  wave-normal  N3, with its v ib ra t ion  
direction V 3 (or V~). Consider the pair of circles p, tha t  is, the pair  of 
circles through N 3 at  angles §  and  _ p o  from N~ V s. Their  points,  

t aken  in pairs, belong to the class P .  I f  it  is possible to find on a certain 
pair  p two points  (one on each circle) such tha t  they  also belong to the 
class M N ,  then  those two points  will belong to the class M N P ,  as they  

N t 

N2 ~ N2 N~ N2 

FIGS. 1 and 2: FIG. 1 (left). The grid mn of great circles at 10 ~ intervals, based on 
two rave-normal:vibration sets N 1 V1 and 2( 2 V s. (In figs. 1-4 the pole of the 
spindle-stage axis is in the centre of the projection.) FIG. 2 (right). Two points, 
B and C, that belong to the class MNP. Their indices are 30, 28, 49 and 30, 28, 49 

respectively. The grid is the same as that of fig. 1. 

will satisfy the condi t ion A B N  i V~ = A C N  i V i for the  three wave- 
normals  considered so far. As an  example,  the points  B and  C of fig. 2 
are on the circles p = 49 and  p = - 4 9 ,  and  they are also the points  30, 
28 and 30, 28 of the grid ran. I t  can be seen tha t  at  this stage i t  becomes 
necessary to th ink  of the circles and  the points as having two-figure 
indices indicat ing their location in degrees, the indices of B being 
m = 30, n = 28, io = 49. A convenient  way of finding such a pair  of 
points  is as follows: the m n  grid, d rawn on tracing paper,  is ro ta ted un t i l  
the point  N a falls on one of the two points  of the pr imit ive where the  
great  circles of the stereographic net  intersect.  I n  this way, the great  
circles of the net  can be used as pairs p, wi thout  drawing them on the 
t racing paper. Now, on pairs 10 t aken  at  convenient  i n t e rva l s - - s ay  10 ~ 
to begin wi th - -pa i r s  of points  of class M N  are searched for. Or else, 
on convenient  pairs of circles m (or n) points  of class N P  (or M P )  

are searched for. In te rpola t ion  is usual ly  necessary. I n  the example 

3E 
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mentioned above m ~ 30 (and 30) was chosen, and by inspection of the 

projection it was found that the interpolation had to be done between 

n = 20 and 30 (20 and 30}. Final ly,  n = 28 and io = 49 were found 

(fig. 2). This process of in terpola t ion is quite  simple, and the search 

becomes actual ly  easier for the  nex t  pair, for instance n = 20, m between 

2-6 and 3-6, where the pair  2--6, 20, 40 is found. 

I f  this operat ion is repea ted  a t  convenient  intervals,  two loci are 

obta ined for the  points  of class MNP, each pair of points  having one 

Hi 

/ 09 \=!H ? \ N3 

:'7 
-.. 

--.-..__.~-~, 

FIGS. 3 and 4: FIG. 3 (left). The trisogon N 1 -/Y2 Na, or loci for the pairs of points 
that belong to the class MNP. The circles, stars, squares, and arrows indicate the 
correspondence between points of a pair. The two white squares correspond to 
points B and C of fig. 2. FIG. 4 (right). Four different trisogons: N 1 5T2 N a (dotted 
line), N 1 N 2 Nr (strokes and dots), N 1 :V 2 N s (broken line), N 1 N 2 Ns (continuous 
line). The triangles, squares, crosses, and arrows indicate the correspondence be- 
tween points of a pair. Of the five points of intersection, N1, Ni, and H do not 
include a pair ; A and A constitute a pair and they are the poles of the optic axes. 

point  on one locus and the  other  point  on the other  locus (fig, 3). I t  

should  be noted tha t  a given point  of one of these loci cannot  be con- 

bined arbi t rar i ly  with any point  of the o ther  ; every  part icular  po in t  on 

one of t h e m  is associated with  a ve ry  definite point  of the  other. In  order 

to show the correspondence between the  two loci in fig. 3, some pairs of 

points  are indicated by means  of l i t t le squares, circles, stars, and arrows. 

In  fact,  each pair of points  of class MNP, as they  are plotted,  should be 

given some arbi t rary  number ,  letter,  or symbol.  

I t  will be convenient  to give a name to this pair  of loci, and the name 

trisogon suggests itself, as the pairs of points  on it  are determined by 

three pairs of equal  angles re la t ive  to N 1 V1, N 2 V2, and N~ V 3. One 

can thus  refer to this tr isogon as the  tr isogon MNP, or the tr isogon 

N 1 N 2 N 3. In  the example  shown in fig. 3 the  trisogon N 1 N 2 N 3 has 
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two branches: one going through N 1 for one point of the pair (this is 
a centrosymmetrical curve tha t  goes round the sphere), and the other 
branch going through N 2 and N 3 for the other point of the pair (this 
actually consists of a smaller closed curve and its inverse). 

The accuracy of a trisogon will depend on the intervals a t  which the 
pairs of points are determined. At  this stage no great  accuracy is re- 
quired, and just  a sketch of the trisogon will suffice. Refinement can 
take place later around the optic axes, once they have been approxi- 
mately found. 

In  order to find on the trisogon the pair of points of class MNPQ, 

tha t  is, the optic axes, one can proceed as follows : The trisogon N 1 N 2 N 3 
is superimposed on the circles q. For  this purpose the projection is 
rota ted until the point N 4 coincides with the point of the primitive where 
the great circles of the net intersect;  these circles can thus be used as 
pairs q. Now, find on the trisogon N 1 N~ N~ a pair of M N P  points 
(either plot ted or interpolated) such tha t  they belong to class Q (equal 
q values). This pair of points will be close to the true positions of the 
optic axes. In  the immediate vicinity of these points the original 
N 1 N 2 N 3 trisogon can then be carefully refined and a small portion of 
another trisogon N 1 N 2 N 4 can be drawn. This N 1 N 2 N 4 trisogon is 
constructed using the original mn grid with the q circles instead of the 
/9 ones. The intersections of the two trisogons then give the pair  of 
points of class MNPQ, tha t  is, the projections A 1 and A 2 of the two optic 
a x e s .  

I t  can be seen immediately how the accuracy of the result can be 
increased if one has measured and plotted more than four vibrat ion 
directions. Additional part ia l  trisogons such as N 1 N 2 Ns, N1 N2 N6, etc. 
can then be drawn in the critical areas, around the optic axes. The 
trisogons will intersect each other (ideally in a pair of points) over 
a limited area in the interior of which the best  solution can be determined 
as tha t  which departs least from the loci. I t  can be seen tha t  it  is con- 
veuient to use the two sharpest extinctions for the grid ran. 

I t  is obvious tha t  once the points A 1 and A 2 have been obtained, the 
determination of the three principal axes of the ellipsoid follows easily, 
except tha t  it  is not possible, without some further information, to 
decide which of the two biseetriees is a and which is 9/ (Joel, 1963). 

Example and discussion 

The stereographic procedure outlined above was tr ied with experimen- 
ta l  extinction measurements and with points taken from a theoretical  
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ext inct ion curve. The l a t t e r  seems to be of more interest  for the  present  

paper,  in order to learn something about  the accuracy tha t  can be 

achieved in the  de te rmina t ion  of the  two optic axes f rom a few good 

ext inc t ion  measurements .  As to the  effect t h a t  inaccurate  (not sharp) 

ext inct ions m a y  have on the  final result ,  i t  seems difficult to give general  

rules;  in any  case, i t  would be advisable  to spend some t ime over  the  

measurements  and to use only the  sharpest  extinctions.  

Fig. 4 shows four typica l  trisogons t h a t  were drawn with  da ta  (wave- 

normals  and vibra t ion  directions) t aken  f rom a theoret ical  ext inct ion 

curve  (2V = 90~ The grid r a n - - n o t  shown in Fig. 4 - - i s  the  same grid 

based on N 1 and N 2 shown in fig. 1 and used in figs. 2 and 3. I t  can be 

seen t h a t  the trisogons shown in fig. 4 have  quite  different shapes. 

Three dis t inct  cases can be recognized:  

A tr isogon with one locus for one of the  optic axes A, consisting of 

a cent rosymmetr ic  curve  tha t  runs round the  sphere, and a separate  

locus for the  other  axis A,  consisting of two smaller closed curves t h a t  

are cent rosymmetr ie  to each other.  This is the case of the  tr isogon 

N 1 N 2 N 3 of fig. 3 (also shown as a do t ted  line in fig. 4) and the tr isogon 

N 1 N 2 N 4 drawn in strokes and dots in fig. 4. 

Or a tr isogon consisting of one cont inuous (centrosymmetric)  curve 

running round the sphere ; par t  of i t  is the  locus for one axis and the  

remainder  is the locus for the  other  axis. This is the case of the tr isogon 

N 1 N 2 N 5 shown in fig. 4 in broken line. 

Thirdly,  a l imit ing case be tween these types  can arise, as shown by  the 

tr isogon N 1 N 2 N6 drawn in fig. 4 in a cont inuous line. I t  can be con- 

sidered as the three curves of the first type  having two common points,  

one in each hemisphere,  or the curve of the second type  having two inter-  

sections, one in each hemisphere.  

This limiting ease arises when N--the third wave-normal used for drawing the 
trisogon N1N2N-- is  chosen in such a way that the great circle NV goes through any 
of the points 00, 09, 90, or 99 of the grid mn. In each of these four cases, the inter- 
section on the trisogon is actually the point 00, 09, 90, or 99 respectively. In the 
example of fig. 4 it is the point 00. These special positions of N can be labelled 
3/'00, N09, N~0, and Ngg respectively, so that in fig. 4, N 6 corresponds to Noo. 

The points No0 , No9 , Ngo , and N99 divide the projection circle into eight arcs. 
When a wave-normal is chosen on four of them (alternate ones) a trisogon of the 
first type arises ; and if it is taken on the other four, then a trisogon of the second 
type is obtained. 

I n  order to show the  correspondence be tween the  points  of a pair on 

the trisogons of fig. 4, some typical  pairs have  been indicated by squares, 

triangles, crosses, and arrows. I t  will be seen tha t  all the  trisogons inter-  

sect a t  five points, N1, N2, H,  A, and A. The last two const i tute  a pair, 
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and they  are the  optic axes, while the  first three points  do no t  include 

a pair. Indeed,  i t  is obvious t h a t  nei ther  N 1 nor  N~ can be an optic axis, 

for if  ei ther of t h e m  were, one would no t  have  been able to record an 

ext inc t ion  posi t ion;  however,  we note  tha t  the  corresponding points  to 

N~ (triangle) on the  other  trisogons, also marked  by  triangles, while 

t hey  do not  coincide, all lie on the  great  circle N1 H,  while the corre- 

sponding points  to N 1 (cross) all lie on N~ H.  As to the  poin t  H (square), 

the  corresponding points  on each of the  four  trisogons are Ns, N4, Ns, and 

N6, and it  follows tha t  H cannot  be an  optic  axis. The problem therefore  

has no ambigui ty ,  in spite of these three  spurious intersections,  which 

arise as a consequence of choice of N 1 and N 2 as the  base of the  grid 

m n  (fig. 1), so t h a t  t hey  are au tomat ica l ly  common  to all four  trisogons, 

while the  th i rd  point,  H,  is also fixed by  the  choice of N 1 and N2, as 

follows : if m and n are the  indices of the  great  circle N 1 N~ (the pr imi t ive  

in figs. 1 to 4) re la t ive  to N 1 V 1 and N 2 V~ respect ively  (see fig. 1), then  

the  indices of H are ~ and ~. I n  the  example  shown m ~ - 5 4  ~ and 

n = - -69  ~ so tha t  H has the indices 54, 69. 

I t  thus  follows tha t  the two optic axes can in fact  be de termined  by the  

procedure out l ined in this paper  as the  pair  of points  a t  which two  

trisogons intersect.  For  the purpose of  checking the  result  and a t ta in ing  

higher accuracy,  more than  two tr isogons can be used. 

I t  is convenient to draw the grid m n  in one colour, say black, and to use several 
colours, letters, numbers, or symbols for marking successive pairs of points on any 
of the trisogons. The most difficult step would probably seem to be the finding of the 
first few pairs of points of a trisogon N 1 N 2 N. This can be greatly facilitated in the 
following way. 1 To begin with, N and H constitute one pair of points of the trisogon 
(the determination of H is explained in the preceding paragraph) ; and there are two 
more pairs that are also very easy to determine: N1 will be paired with a point 
lying on the great circle N~ H, while N~ will form a pair with a point on the great 
circle N 1 H. Further pairs can then be searched for in the neighbourhood of any of 
these three pairs. One soon learns how to avoid exploring regions that are not 
required. In this respect fig. 4 has a high degree of redundancy. 

Fo r  the  theoret ical  example  shown in fig. 4, wi th  not  more t h a n  the  

usual  precaut ions and care, and wi th  a 20 cm diameter  net,  the  angle 

2V was de termined  with  an error of no t  more t h a n  half  a degree. Of 

course the exper imenta l  errors, including those due to possible lack of 

sharpness of any  of the  observed ext inct ions,  will add to the  error. This 

effect can be minimized by  using only the  sharpest  ext inc t ion  readings. 

The present  me thod  for de termining the  two optic a x e s - - a n d  the  

three principal  axes of the  e l l ipso id- -of  a biaxial  crystal  is no t  being 

advoca ted  as a handy  one, as the  s tereographic  construct ions are indeed 

i I am grateful to Dr. F. E. Tocher for suggesting this approach via the point H~ 
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l e n g t h y  a n d  s low,  a n d  c a n  be  q u i t e  t i r i ng .  B u t  i t  m a y  be  u se fu l  for  e a s e s  

i n  w h i c h  o n l y  i n t e r r u p t e d  r a n g e s  o f  t h e  e x t i n c t i o n  c u r v e  a re  a v a i l a b l e .  

F u r t h e r m o r e ,  i t  is fe l t  t h a t  i t  is o f  s o m e  t h e o r e t i c a l  i n t e r e s t  as  i t  s h o w s  

h o w  t h e  d i r e c t i o n s  o f  t h e  t w o  op t i c  a x e s  ( in o t h e r  w o r d s ,  t h e  op t i c  a x i a l  

a n g l e  2 V  a n d  t h e  o r i e n t a t i o n  o f  t h e  e l l ipsoid)  a re  p h y s i c a l l y  d e t e r m i n e d  

b y  a n y  f o u r  i n d e p e n d e n t  e x t i n c t i o n  m e a s u r e m e n t s .  F i n a l l y ,  i t  c a n  a l so  

be  u s e d  in  c o n n e x i o n  w i t h  t h e  u n i v e r s a l  s t a g e ,  w h i c h  c o u l d  be  u s e f u l  

for  s e l e c t i n g  a c o n v e n i e n t  r o t a t i o n  a x i s  in  t h e  c r y s t a l ,  t h a t  is, a con -  

v e n i e n t  p l a n e  for  t h e  w a v e - n o r m a l s .  T h e r e  is no  r ea l  n e e d  for  t h e s e  

w a v e - n o r m a l s  to  be  al l  in  t h e  s a m e  p l a n e  ; b u t  i f  t h e y  a r e  n o n - c o p l a n a r ,  

t h e n  t h e  s t e r e o g r a p h i c  c o n s t r u c t i o n s  b e c o m e  m o r e  d i f f icul t .  
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Appendix. A direct mathematical formulation 

The following mathemat ica l  formulation follows directly from the Biot-Fresnel  
theorem ; i t  is more general t han  the  t rea tment  given in the  foregoing sections, as 
it does not  require the  wave-normals to be coplanar. 

The equation of the  plane tha t  contains the  optic axis A 1 and the  wave-normal 
N is: a l •  - -  0 (2 )  

and tha t  of the  plane through A 2 and N:  

a 2 •  - -  0.  (3 )  

The equation of the  two planes through N t ha t  bisect the dihedral angle formed 
by these planes is : a~ • n .  r a~ • n .  r 

• - 0. (4) 
l a ~ x n J  l a ~ •  

This equation is satisfied by any  wave-normal n i and its corresponding vibration 
directions r i  or r~, and it can in fact be used (at least in theory) for determining the  
optic axes a 1 and a 2 from observed extinction measurements .  As a 1 and a2 are uni t  
vectors, only two components have  to be determined for each ; in all, four unknowns.  
Therefore, one uses four wave-normals n i  (i --  1, 2, 3, 4) with one of the two vibra- 
t ion directions r i associated with each of them,  and  sets up four equations of the  

form: la2 • ni]a  I • n i. r i = • lal • n~[a 2 • h i .  r i .  (5) 

The triple products a • n i. r i can be rearranged as n i  • r i .  a ; and equations (5) 

become : ja2 x n i ln  ~ x r i. a l  = • Jal X niJn  i • r i. a 2. (6) 

Bu t  the  product n i x  r i is a uni t  vector perpendicular to n i and r i and has there- 
fore the  direction of the  second vibration associated with n i. Therefore, n i x r i can 
be replaced by r i; and the equations to be solved are, together with a 2 ~ a~ --  1 : 

($12 X n i ) 2 ( a t ,  r i )  2 - -  ( a  t X n/ )2(a2 ,  r i )  2 ( i  = 1, 2,  3, 4) .  (7)  

The unknown components (at1, al~, and a12 of a t ; a21, a~2 , and a23 of a~) appear in 
products  such as a~l a.~l, a12 a13 a.~ 2, al~ a13 a21 a~2, etc., so tha t  it  is not  a practical 
proposition to solve these equations,  but  the  problem can be tackled graphically 
and  one way of obtaining the answer is the stereographic solution given above. 
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Equations (7) can also be deduced from a diagram, as follows: 
In the stereographic projection, fig. 5, the arcs M 1 V and Ms V are equal, and 

therefore: cos M 1 V ~ cos M 2 V. But in the right-angled triangles A 1 M 1 V and 
A s M  s V  cosA 1 V =  c o s A 1 M l c o s M  1 V  and cosA 2 V =  cosA2M 2cosM 2V; 
therefore : 

cos A 1 V/cos A2 V -- cos A 1 M1/cos A s M~ ~ sin N A 1 / s i n  N A  2 

since N A I + A  1 M 1 --  N A 2 + A  ~ M 2 - -  90 ~ This can be written (the + sign applies 
to the vibration V shown in the figure, the sign to the other vibration): 

al'~r : 4 - ] a i x n l  (8) 
a ~ . r  - - ] a 2 •  ['  

from which equations (7) follow immediately. 

M: V 

Mj 

FIG. 5. Projection (with the wave-normal N in the centre) to illustrate the relation 
between the angles N A 1 ,  N A 2 ,  A 1 V,  A 2 V.  

I f  the wave-normals n are restricted to be coplanar, all of them being perpendicu- 
lar to the vector r 0 (spindle-stage axis), then in equations (7) and (8) n can l:e 
replaced by r0• r (because n is in this case parallel to r0•  r ) ;  and after some 
manipulation one arrives at equation (1) (p. 771). I t  is interesting to notice that  
in this way the equation of the extinction curve has been derived directly from the 
Biot-Fresnel theorem. 

References 

GARAu (I.) and WITTKE (O.), 1964. Acta Cryst., vol. 17, p. 183. 
JOEL (N.),  1950. Min. Mag., vol. 29, p. 206. 
- -  1963. Min. Mag., vol. 33, p. 679. 
- -  and GARAYOOCHEA (I.), 1957. Acta Cryst., Vol. 10, p. 399. 
- - - -  and MuIa (I. D.), 1958. ~in.  Nag., vol. 31, p. 860. 
TOCHER (F. E.), 1962. Min. Mag., vol. 33, p. 52. 
WILCOX (R. E.), 1959. Amer. Min.; vol. 44, p. 1272. 
- -  ]960. Bull. Geol. Soc. Amer., vol. 71, p. 2003. 


