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Theory of immiscibility in mineral systems 
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Chicago 37, Illinois 

[Taken as read 17 September 1964] 

Summary. The theoretical basis for the stability of binary and quasi-biuary 
solutions is discussed with special emphasis on miscibility relations. Solutions of 
the distribution equations are presented for the ease of two and three coexisting 
regular solutions and this model is used to illustrate the energeties of miscibility 
relations. The same principles are then extended to give a qualitative interpretation 
to sequences of mineral assemblag~es consisting of pyroxenes, amphiboles, miens, 
and feldspars. A formulation is presented for the intrinsic stability of a solution, 
which depends on the presence or absence of an excess free energy of mixing, and 
the extrinsic stability of a solution, which depends on the standard free energy of 
the component end members. 

O NE of the major objectives in chemical petrology is the deduction 
of explicit functions relating the variables of state in multicom- 

ponental  systems. Since the phases which occur in such systems are, 
with few exceptions, complex mixtures, solution theory has much to 
contribute to their interpretation.  This is especially true in systems in 
which miscibility gaps occur, and the complex sequences of mineral 
associations may be interpretable in terms of the energetics of a model. 

The equations of thermodynamics alone relate the coexisting phases 
only implicitly and do not provide a quanti tat ive picture of the system. 
In order to close this gap we require the equations of state, explicit  
functions of the chemical potentials in terms of the temperature,  pres- 
sure, and composition. These functions may  be empirically determined 
as in the ease of heat  capacities or p ressure~olume relations, or they  
may be based in par t  on certain theoretical models derived from statisti-  
cal mechanics. An interesting example of the lat ter  approach is the 
t rea tment  of silica solubility in water vapor by  Wasserburg (1958). 

The greatest  source of difficulty arises in systems of such complexity 
tha t  the statist ical  unit  is unknown or poorly defined. Without  some 
knowledge of the atomic structure of a phase i t  is impossible to construct 
models of any generality. For  such systems the degree of association or 
polymerization of the simplest units is unknown and consequently 
neither the ideal configurational entropy nor the excess free energy 
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terms can be deduced. The ultimate example of this situation is to be 
found in the complex silicate melts in which many different ring, chain, 
or group polymers may be present simultaneously. A few of these melt 
systems lend themselves to a multiple solution model approach in which 
the empirical data are fitted to the most probable association or dissocia- 
tion schemes. 1 However, such systems may also be treated solely in 
terms of their macroscopic variables, which do not depend on a detailed 
solution model. An illustration of this method has recently been pre- 
sented by the writer (Mueller, 1964). 

The situation is somewhat more satisfactory for crystals. The reason 
for the relative simplicity of the latter is the order imposed by the crystal 
lattice. In  addition the statistical unit is relatively well defined as an 
atomic or ionic particle in a restricted solution series. The ferro- 
magnesian silicates serve as examples : Although Mg 2+ and Fe 2+ interact 
strongly and to different degrees with the Si-O framework, their inter- 
action with each other is relatively constant throughout the solution 
series. The result is that  the solutions exhibit nearly ideal behaviour 
(Mueller, 1961). 

When the ionic components of a solution series differ markedly in some 
characteristic such as size or electronic configuration, repulsive forces 
may arise and a marked tendency to segregate on a microscopic (lattice 
position) scale may be accompanied by macroscopic exsolution pheno- 
mena. Both of these effects are strongly temperature-dependent. Ion 
pairs that  show this behaviour are Ca2+-Mg 2+ and K + Na + in the com- 
mon rock-forming pyroxenes, amphiboles, micas, and feldspars. When 
several of these solutions coexist it is possible to explain, at least qualita- 
tively, the possible sequence of stably coexisting minerals in terms of the 
energetics of a non-ideal solution model. 

The regular solution model 

The simplest solution model that  duplicates in a qualitative way many 
of the characteristics of mineral assemblages is the regular solution first 
defined by Hildebrand (1929). The basis of this model is the postulate 
of an ideal entropy of mixing and a partial molar heat of solution that  
varies as the square of the concentration but is independent of the 
temperature. 2 Thus the partial molar heat of solution is equal to the 
corresponding excess free energy. 

See, for example, the recent paper by Knapp and Flood (1961). 
2 A lucid discussion of the statistical basis for the regular solution may be found in 

the book by Gurney (1949). 



I M M I S C I B I L I T Y  I N  M I N E R A L  S Y S T E M S  1017 

The expressions for the relative activities of the components A and B 
in the binary regular solution are 

a ; - - X ~ e x p { ( 1  X~)2W~/RT} and a~ (1--X~)exp((X~)eW~ 

in which X~ refers to the mole fraction A/(A § and W ~ is the constant 
factor in the partial molar heat of solution. The general behaviour of the 
phase a depends on the sign W% If  this parameter is negative the 
attraction between the unlike components of the solution is greater than 
between like components and the solution has an intrinsic stability in 
excess of that  of the ideal solution. Conversely, if W ~ is positive the 
stability of the solution is decreased and if W~ ~ 2 the solution 
breaks up into two immiscible solutions of different compositions. The 
result of the latter behaviour is a symmetrical phase diagram in which 
a plot of the temperature against the composition shows a maximum 
at X A = 0.5. 

I t  is interesting to consider the consequences of the coexistence of two 
distinct regular solutions, as, for example, ~ and/3 with two distinct heat 
constants W ~ and WB. This is qualitatively similar to certain mineral 
systems with quasibinary solid solutions. Thus we may have a mixed 
crystal represented by the formula (A,B)C in which the quasi-binary end 
members are AC and BC. The second solid solution may be distinguish- 
able fi'om the first by possessing the additional component D. The result 
is a formula (A,B)CD in which the quasi-binary end members are ACD 
and BCD. The independently variable components of this system are 
AC, BC, and D, but both solutions are quasi-binary with respect to A an 
B. The activities of the 13 phase are then 

a~ = X~exp{(1--XflA)2W/3/RT} and aft B (1-X~A)exp((X~)2Wfl/RT}. 

In  both of the above pairs of equations the activities refer to the end 
members AC, BC, ACD, and BCD. Consequently no simple transfer 
reaction connects the phases (A,B)C and (A,B)CD. The proper reaction 
to consider is the exchange reaction ACD+BC ~-BCD+AC. If  we 

a a fi  combine the four activities ai, a/~, a~, a~ in the conventional way we 
obtain the expression for the equilibrimn constant: 

( 1  - -  X~)X2 exp{(1 - -  2 X ~ )  W~ 
S~ = (1 -X~)X~ r 

Solutions for this transcendental equation may easily be obtained by 
graphical means or by use of an electronic computer. 

3 v  
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In  order to i l lustrate the behaviour  of this equat ion in the range of 
unmix ing  we assign the values W ~ 3072 calories, W t~ = 2875 calories. 
F r o m  the formula W / R T  c = 2 these values correspond to the critical 
tempera tures  T~ = 500 ~ C and  T~ a = 450 ~ C. To evaluate  the effect of 
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:FIG. l. Theoretical distribution diagram for coexisting regular solutions. Dashed 
portions of curves indicate metastable and unstable compositions in which immis- 

cibility occurs. Immiscibility gaps are shown as straight full lines. 

the  equi l ibr ium cons tan t  we may  assume tha t  to a first approximat ion  
the  s tandard  free energy of the react ion A C D + B C  ~ B C D §  is a 
cons tan t  and  equal  to 300 calories. Consequent ly  In K a is an  inverse 
funct ion of the  temperature ,  and  we obta in  

( 1 - x ~ ) x ~  exp((1--2X~)3072/RT} 
exp( - -  300/RT) : (1 -- X~)X~ fl exp{(1 - -  2X~A)2875/RT }" 

Fig. 1 is a graph of this equat ion for various temperatures  over the 
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entire composition range. The full curves represent stable compositional 

ranges of the coexisting solutions and the dashed curves metastable and 

unstable ranges. At 600 ~ C there are two coexisting solutions a and 

over the entire range. At 500 ~ C the a solution has attained its critical 

point as shown by the horizontal inflexion. At 400 ~ C both a and fi have 

split into two solutions and the miscibility gap is largest for the a solu- 

tions. The final curve for 300 ~ C shows a closed, isolated segment for 

this temperature in the lower right-hand region. This segment illustrates 

the complexities that  may arise even in these comparatively simple 
functions. The metastable and unstable segments, which are direct con- 
tinuations of the stable portions of the curves, are of course easily 
predictable from the corresponding segments in tile activity curve. 
However, the closed region is not so readily apparent from the initial 
design of the model. 

Interpretation of sequences of mineral assemblages 

Fig. 1 represents univariant and invariant states of an isobaric- 
isothermal system. The thermodynamic characteristics of continuous 
distribution curves for such systems have been previously treated 
(Mueller, 1961). In the more general system under discussion here a 
sequence of 'mineral '  assemblages may be constructed by varying the 
composition along the path O-ABCD-1 as shown in fig. 1. An alterna- 
tive and somewhat more familiar means of depicting these relations for 
a given temperature is shown in fig. 2, which shows the relation for 
300 ~ C. I t  should be kept in mind that the slopes of the tie-lines in fig. 2 
are highly significant since they relate directly to the analytic expression 
and the energeties of the system. These figures show that three two- 
phase and two three-phase fields are traversed when the species B is 
exchanged for the species A. 

Although it would not be expected that many nlineral systems would 
obey the relatively simple soIution models represented by figs. 1 and 2, 
it might well be expected that qualitatively similar relations would be 
fairly common. I t  is implied in the geometry of the figures that two 
different types of curves or crystallization paths are possible, depending 
on whether the a or fi phase develops a miscibility gap first. These two 
alternatives are depicted in a qualitative way in fig. 3 as the paths 
O-ABCD-1 and O-A'B'C'D'-I. Such diagrams may in principle be used 
to interpret a variety of mineral assemblages in terms of the sequence of 
coexisting pairs and trios of minerals that appear. This may best be 
illustrated by reference to specific systems. We may begin with the 
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system CaSiOa-MgSiO 3 Si03H 2. The members of this system that 
regularly appear in metamorphic rocks are diopside, enstatite, tremolite, 

A X~ B 

0 c X~, D 1 

FIO. 2. A t r i a n g u l a r  p lo t  of the  300 ~ C d a t a  of fig. ]. 
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Q u a l i t a t i v e  i l l u s t r a t i on  of a l t e r n a t i v e  sequences of coexis t ing  

so lu t ion  based  on immisc ib i l i t y  model .  

and cummingtonite (or anthophyllite). In these minerals the calcium 
and magnesium components form very non-ideal solutions and miscibi- 
lity gaps occur in both amphiboles and pyroxenes. If, therefore, we 
represent the composition of the pyroxenes between CaMgSi206 and 
Mg2Si206 as the abscissa and the composition of the amphiboles between 
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CaeMghSisO22(OH)2 and MgTSisO22(OH)2 as the ordinate we can distin- 
guish between the two possible sequences of coexisting mineral pairs 
and trios : 

0 -A,  t remoli te-diopside;  A-B,  t remoli te-diopside-kupfferi te  ;1 B C ,  
diopside kupfferite; C-D, diopside-kupfferite enstat i te;  D - l ,  kupffer- 
i te-ensta t i te  ; excluded, t remoli te-enstat i te .  

Or 0 -A ' ,  t remoli te-diopside;  A'-B', t remol i te-d iops ide-ens ta t i te ;  
B'-C', t remoli te-ensta t i te ;  C ' D ' ,  tremolite enstat i te-kupfferi te;  
D ' - I ,  enstat i te-kupfferi te ; excluded, diopside-kupfferite. 

We see tha t  one pair of minerals is excluded in each case, a fact tha t  
may  be used to deduce the correct assemblage. In  nature other elements 
are usually present so tha t  the solutions are more complex. One of the 
commonest addit ional species is Fe 2+, which behaves similarly to Mg 2+ 
in relation to Ca 2+. I t  is in fact in the metamorphic iron formations, in 
which Fe 2+ is abundant,  tha t  the above sequence is best developed. 
Examples  of these iron formation assemblages have been presented by  
Mueller (1960) and by  Kranek (1961). In  these assemblages the pair  
actinolite orthopyroxene (corresponding to t remoli te-enstat i te)  does not 
occur, 2 but  the pair Ca-pyroxene cummingtonite is of wide occurrence. 
These relations hint tha t  the first of the above sequences is probably the 
correct one. Of course certain members of a pair  or trio might at  times 
be excluded for other reasons. For  example the part ia l  pressure of water 
might  be too high cr too low. Thus tremolite and kupfferite 3 might occur 
without diopside. 

We must also remember tha t  these simple deduced sequences may be 
upset by  the presence of such ions as A13+, which have marked effects on 
the energetic properties of minerals (Kretz, 1960). Thus A13+ might 
stabilize an otherwise incompatible association. For  example, aluminous 
hornblende and orthopyroxene are frequently associated in granulite 
facies rocks (Ramberg, 1949). 

A further example is provided by  the sequence of coexisting feldspar 
and  mica in the system KA1Si3Os-NaA1Si3Os-AI~O4H 2. This system has 
been investigated experimentally by  Eugster and Yoder (1954) and 
studied in the field by  Banno (1960). The sequence of coexisting micas 
and feldspars obtained with a change in the ratio K:  ( K + N a )  appears to 
be entirely analogous to the case of the pyroxenes and amphiboles just  

1 i.e. kupfferite (of Allen and Clement) = magnesio-anthophyllite [Ed.]. 
2 Kranck reports one minor occurrence of a 'light green amphibole' with hyper- 

sthene, but the composition of this amphibole is not given. 
8 Pure kupfferite has never been found and is probably unstable in the extrinsic 

sense. 
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discussed. For  example, the assemblage Na-rieh feldspar and K-rich 
mica (muscovite) is common, but  the coexistence of Na-rieh mica 
(paragonite) with K-rich feldspar seems excluded. 

Intrinsic and extrinsic stability relations 

The stabil i ty relations of solid solutions may be divided into two types : 
intrinsic and extrinsic. The immiscibili ty effects just  discussed are of the 
intrinsic type since the internal stabil i ty or instabil i ty of the solution 
per se governs whether or not a new phase appears. Thus solutions at  
a given pressure and temperature are stable or unstable entirely by  
virtue of their excess free energies of solution. I t  is obvious tha t  ideal 
solutions are always intrinsically stable since the excess free energy is 
zero, and the free energy of mixing has a fixed negative value at  a given 
temperature and concentration. Therefore ideal solutions can only be 
extrinsically unstable since their instabil i ty must  be related to some 
factor other than the inherent solution properties. 

Extrinsic instabil i ty arises from the instabil i ty of the pure components 
or end members of the solution relative to certain reaction products. An 
example of this type of instabil i ty occurs in the system Mg~SiO~- 
F%Si04-SiO 2. There is considerable evidence tha t  both Mg-Fe pyroxenes 
and olivines form nearly ideal solutions (Sahama and Torgeson, 1949; 
Mueller, 1961). Yet at  liquidus temperatures Bowen and Schairer (1935) 
found tha t  pyroxenes of more than 55 tool. % ferrosilite could not  exist. 
At  lower temperatures a higher ferrosilite content ( ~  84 %) becomes 
stable but  pure ferrosilite has never been synthesized. The upper l imit  
to the quant i ty  of iron a pyroxene may contain is therefore uncertain, 
but  it  is possible tha t  pure ferrosilite may be stable under a limited range 
of conditions. This type of instabil i ty may  be il lustrated by the reaction 
ferrosilite ~ fayalite + silica, which governs the relations in some situa- 
tions. Although inadequate thermal data  exist for ferrosilite to com- 
pute AG c, the s tandard free energy change for this reaction, a negative 
value is indicated by the distribution of Fe z+ and Mg 2+ between olivine 
and pyroxene (Ramberg and De Vore, 1951). I f  both minerals are ideal 
solutions we obtain exp(_AGO/2RT) = "~Fe/Z~Fe ' Y ~  ,vpx in which the X~e and 
X~ x refer to the ratio Fe2+/(Fee++Mg e+) in the olivine and pyroxene 
respectively. Since ol px AGb ~ must (XFe/XFe) > 1, be negative. Iron-rich 
solid solutions of pyroxene are thus unstable because of the instabil i ty 
of ferrosilite relative to fayalite and quartz. 

Some ferromagnesian solid solutions appear to have an excess intrinsic 
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stabi l i ty  over  the  ideal model.  Thus cummington i te  was found to have  

a negat ive  excess free energy of mixing (Mueller, 1961). 

The s tabi l i ty  relat ions of complex mineral  assemblages are f requent ly  

depicted as in fig. 2, in which two-phase fields a l ternate  wi th  three-phase 

fields. When  such diagrams refer to the  f ract ion Mg2+/(Mg2++Fe ~+) 

they  usual ly  depict  complex extr insic s tabi l i ty  relations. When,  on the  

o ther  hand, a d iagram refers to the  fract ion Ca2+/(Cae++Mg 2+) or o ther  

fractions of unlike ions the relat ions depicted m a y  involve bo th  extrinsic 

and intrinsic relations. Diagrams of such complex i ty  have  l i t t le  predic t ive  

value since the  extrinsic s tabi l i ty  relat ions cannot  be ant ic ipa ted  wi th  

any  degree of confidence in the  absence of thermochemica l  data.  
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