MINERALOGICAL MAGAZINE

JOURNAL OF THE MINERALOGICAL SOCIETY

Vol. 33 September 1964 No. 266

Arthurite, a new copper-iron arsenate from Cornwall

By R. J. Davis and M. H. Hey
Department of Mineralogy, British Museum (Natural History)
London, S.W. 7

[Read 12 March 1964]

Summary. Thin apple-green crusts on several specimens from Hingston Down Consols mine, Calstock, Cornwall, proved to consist of a new mineral, alone or intimately mixed with pharmacosiderite (which it closely resembles), or with an unidentified mineral of the alunite-beudantite group having $a 7 \cdot 04, c 16 \cdot 6 \AA$, or with both. The new mineral, for which the name arthurite is proposed, for Sir Arthur Russell and Mr. Arthur W. G. Kingsbury, who independently collected material and suggested that it might be new, gives X-ray powder photographs with their three strongest lines at $4 \cdot 28,4 \cdot 81$, and $6 \cdot 97 \AA$; the photographs could be satisfactorily indexed on a monoclinic unit-cell with $a 10 \cdot 09, b 9 \cdot 62$, с $5 \cdot 55_{0} \AA$ (all $\pm 0.01 \AA$), $\beta 92 \cdot 2^{\circ} \pm 0 \cdot 2^{\circ}$, and containing $\left[\mathrm{Cu}_{2} \mathrm{Fe}_{4}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{7} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right]$. Chemical analysis on $1 \cdot 1 \mathrm{mg}$ gave: $\mathrm{CuO} 16 \cdot 8, \mathrm{Fe}_{2} \mathrm{O}_{3} 32 \cdot 4, \mathrm{As}_{2} \mathrm{O}_{5} 34 \cdot 3, \mathrm{H}_{2} \mathrm{O} 16 \cdot 5 \%$ (reduced to 100% after deduction of 27.4% quartz); sp. gr. $3 \cdot 2$ (calc. $3 \cdot 07$). Under the microscope arthurite is pale olive-green and very finely granular ; $n 1 \cdot 78$, birefringence low to moderate.

AsSPECIMEN sent to us by Sir Arthur Russell in 1954 as a possible new mineral, from Hingston Down Consols mine, Calstock, Cornwall, gave a powder photograph distinct from any in our records, but the amount of material was too small for analysis at that date. Further specimens from the same locality received from Mr. Arthur W. G. Kingsbury in 1957 and later gave very similar photographs, but it became evident that only very small areas of the thin apple-green crusts were free from admixture with pharmacosiderite or an unidentified mineral of the alunite-beudantite family ${ }^{1}$ or both, and the material was again set aside to await developments in analytical technique.

The problem was reopened as soon as a decimicrobalance, weighing to $0 \cdot 1 \mu \mathrm{~g}$, became available. Samples were collected from several specimens
${ }^{1}$ This mineral has a 7.04, c $16 \cdot 6 \AA$, rather near the cell-dimensions of hidalgoite; it proved to be too closely associated with arthurite and pharmacosiderite to give useful analytical data.
and were all checked by X-ray powder photographs; none proved free from pharmacosiderite, the hidalgoite-like mineral, or quartz, and attempts at purification by flotation with bromoform were ineffective, the association being too intimate to permit of more than a small degree of

Table I. Chemical analyses of arthurite; all samples checked by X-ray powder photography.

	A	B	C	A^{\prime}	B^{\prime}	C^{\prime}	D	E
CuO	$12 \cdot 1$	$8 \cdot 4$	$12 \cdot 4$	$16 \cdot 8$	17	$14 \cdot 5$	$17 \cdot 7(?)$	$16 \cdot 00$
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$23 \cdot 4$	$12 \cdot 3$	$25 \cdot 7$	$32 \cdot 4$	25	$30 \cdot 1$	$29 \cdot 5$	$32 \cdot 12$
$\mathrm{As}_{2} \mathrm{O}_{5}$	$24 \cdot 7$	$16 \cdot 9$	$29 \cdot 7$	$34 \cdot 3$	$\mathbf{3 4}$	$34 \cdot 8$	$31 \cdot 4$	$34 \cdot 67$
$\mathrm{H}_{2} \mathrm{O}$	$11 \cdot 9$	$11 \cdot 9$	$17 \cdot 6$	$16 \cdot 5$	24	$20 \cdot 6$	-	$17 \cdot 21$
Insol.	$27 \cdot 4$	$[50 \cdot 5]$	$[14 \cdot 6]$	-	-	-		
Sum	$99 \cdot 5$	$[100]$	$[100]$	$100 \cdot 0$	100	$100 \cdot 0$	-	$100 \cdot 00$

A. Arthurite plus quartz (X9556e; from B.M. 1964,80 ; on $2 \cdot 1 \mathrm{mg}$).
B. Arthurite plus much quartz ($\mathrm{X} 378 \mathrm{~F}(c)$; from B.M. 1964,80 ; on 1.7 mg .).
C. Arthurite with some pharmacosiderite (X9555f and g; from B.M. 1964, 75; on 1.4 mg).
$\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$. Anals. A, B, C recalculated after deduction of insolubles.
D. Arthurite with some pharmacosiderite from Sir Arthur Russell's original specimen (X9554d; B.M. 1964, 74); partial analysis on 0.4 mg .
E. Theoretical composition of $\mathrm{Cu}_{2} \mathrm{Fe}_{4}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{7}, 6 \mathrm{H}_{2} \mathrm{O}$.
concentration. The most suitable sample had quartz as the only impurity detectable by X-ray powder photographs, and portions of $1 \cdot 1$ and 1.0 mg of this were taken for analysis (A, table I). Other samples (B, C, D) gave confirmatory results.

Water was determined as loss of weight of the $1 \cdot 1 \mathrm{mg}$ sample on ignition just below red heat; the residue was dissolved in conc. HCl and the insolubles filtered off by placing a small piece of thick filter-paper in the drop of solution and sucking the liquid through it into a capillary tube, washed with dilute HCl , ignited and weighed. Ammonium citrate was added to the solution and the pH brought to approx. 9.0 ; copper and other heavy metals were extracted with diphenylthiocarbazone in CCl_{4}, and after acidification and extraction of excess reagent the iron was extracted with $0 \cdot 1 \% 8$-hydroxyquinoline in chloroform and determined in this extract by colorimetry at $580 \mathrm{~m} \mu$. The diphenylthiocarbazone extracts were washed with 1:500 HCl and the washings examined for Pb, Zn, etc. (none was found); the copper-bearing CCl_{4} layer was evaporated, diphenylthiocarbazone destroyed by gentle ignition, and the copper determined by colorimetry of its diethyldithiocarbamate complex in CCl_{4} at $440 \mathrm{~m} \mu$. Arsenic was determined on the 1.0 mg sample by molybdenumblue colorimetry after distillation as AsCl_{3}.

An accurate specific gravity could not be obtained owing to the intimate intergrowth with other minerals; most material appeared to remain suspended in a $\mathrm{CHBr}_{3}-\mathrm{CH}_{2} \mathrm{I}_{2}$ mixture of sp. gr. $3 \cdot 2$; the calculated sp. gr. for a unit cell of the dimensions given below and containing $\mathrm{Cu}_{2} \mathrm{Fe}_{4}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{7} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is $3 \cdot 07$. Together with the X -ray data (below)
these results show that the mineral is one not hitherto recognized, and we propose the name arthurite (pronounced A- rtherait) in honour of Sir Arthur Russell and of Mr. Arthur W. G. Kingsbury, both of whom have made outstanding contributions to our knowledge of the minerals of Britain.

FIG. 1. X-ray powder photograph of arthurite. Co-K α radiation, $11 \cdot 46 \cdot \mathrm{~cm}$ diameter camera.

Under the microscope, the arthurite is pale olive-green, with a low-tomedium birefringence and no marked pleochroism; owing to its finely granular nature, only a mean refractive index, $n 1 \cdot 78$, could be measured.

X-ray powder photographs were taken of several samples of arthurite; two samples ${ }^{1}$ gave identical results, which are given in table II and are believed to represent the pure mineral, because all these lines are present with the same relative intensities on all the films, no matter what impurities are present, and because apart from five extremely weak lines this pattern can be indexed efficiently; failure to index was one of the criteria used to reject earlier films as representing impure specimens and we persisted until the results in table II were obtained. On all the specimens on which it has been identified, the arthurite forms a thin apple-green crust; it is always microcrystalline and unoriented. On one sample the surface of the crust was a dull yellowish grey, but the interior was green; a sample from this crust contained scorodite, which was also present in small amount on part of the original specimen from Sir Arthur Russell. On most of the specimens, however, the impurities, which seem to be concentrated near the surface of the crusts, are pharmacosiderite (fairly well crystallized) or a member of the alunite-beudantite group (see above) or both; the crust does not come away from the matrix cleanly, and many samples contained more or less quartz or fluorite from the matrix.

Trial and error showed that if the first three lines of the powder photograph are indexed as 100, 110, and 200, a well-populated rectangular

[^0]Table II. X-ray powder data for arthurite (Co-K radiation, 11.46 diam. camera), indexed on a unit cell having : $a 10 \cdot 09, b 9 \cdot 62, c 5 \cdot 55_{0} \AA, \beta 92 \cdot 2^{\circ}$. Systematic absences to be expected for space-group $P 2_{1} / c$ are indicated by an asterisk (*), but are probably accidental (see text)

hkl	$\sin ^{2} \theta$ calc.	$\begin{gathered} \sin ^{2} \theta \\ \text { obs. } \end{gathered}$	$\begin{gathered} d \\ \text { obs. } \end{gathered}$	I	hkl	$\begin{gathered} \sin ^{2} \theta \\ \text { calc. } \end{gathered}$	$\begin{gathered} \sin ^{2} \theta \\ \text { obs. } \end{gathered}$	$\begin{gathered} d \\ \text { obs. } \end{gathered}$	I
100	$0 \cdot 00788$	$0 \cdot 00785$	10.08	vs	420	$0 \cdot 16072$	-	-	-
010	$0 \cdot 00866$			*	041	$0 \cdot 164617$	$0 \cdot 16182$	$2 \cdot 203$	ms
110	$0 \cdot 01654$	0.01652	6.97	vvs (3)	$41 \frac{1}{2}$	$0 \cdot 16519$)	$0 \cdot 10182$	2 O	ms
001	$0 \cdot 02605$	-		*	$22 \overline{2}$	0.16596	-	-	-
200	0.08152	0.03156	$5 \cdot 04$	w	$30 \overline{2}$	$0 \cdot 1685{ }^{2}$	$0 \cdot 1684$	2180	vvw
101	0.03283			*	240	$0 \cdot 17008$	-	-	-
020	$0 \cdot 03464\}$	$0 \cdot 03470$	$4 \cdot 81$	vys (2)	$14]$	$0 \cdot 17139$	-	-	
011	$0 \cdot 03471\}$	0.0347	481	vrs (2)	337	0-17161	-	-	-
101	$0 \cdot 03503$		4.69	*	141	$0 \cdot 17359$)	$0 \cdot 17418$	$2 \cdot 143$	
210	$0 \cdot 04018$	0.0374 0.04017	$4 \cdot 62$ $4 \cdot 48$	vevw	222 312	$0 \cdot 17476$ 0.17718	$0 \cdot 17418$	$2 \cdot 143$	nw
111	0.04149	-		-	331	$0 \cdot 17821$	$0 \cdot 17834$	$2 \cdot 118$	w
120	0.04252			-	302	$0 \cdot 18172$	--..		
111	$0 \cdot 04369$	$0 \cdot 04364$	$4 \cdot 28$	Vvs (1)	032	$0 \cdot 18214$	- -180	-	
		0.0532	$3 \cdot 88$	vvve	421	$0 \cdot 18237$	0.18243	2.097	mw
201	$0 \cdot 05537$	-		*	$13 \overline{2}$	0-18782	0.1885	2.061	vw
201	$0 \cdot 05977$	-	-	*	312	$0 \cdot 19038$	$0 \cdot 1908$	2.048	w
021	$0 \cdot 06069$			-	421	$0 \cdot 19717$	-	-	-
		0.0610	$3 \cdot 62$	vvvw	132	$\left.\begin{array}{l}0.19222 \\ 0.19393\end{array}\right\}$	$0 \cdot 1932$	2.035	vwB
211	0.06403				241	$0 \cdot 19393$			
220	0.06616	- -	-	-	500	$0 \cdot 19700$	-	-	-
121	$0 \cdot 06747$	$0 \cdot 06758$	$3 \cdot 44$	ms	241	0-19833	-	-	
211	0.06843			-	322	$0 \cdot 20316\}$	$0 \cdot 2033$	1.984	mwB
121	$0 \cdot 06967$			-	430	$0 \cdot 20402\}$	0.2033	1.984	mwn
300	$0 \cdot 07092$	0.07095	$3 \cdot 36$	w	510	$0 \cdot 20566$	-	-	
030	$0 \cdot 07794$		-	*	$23 \overline{2}$	$0 \cdot 20926$	$0 \cdot 2098$	1.955	w
310	$0 \cdot 07958$	-	-	-	340	$0 \cdot 20948$	-	-	
130	0.08582	0.08597	$3 \cdot 05$	mw	322	$0 \cdot 21636$			
221	0.09001	$0 \cdot 09003$	$2 \cdot 983$	m	050	$0 \cdot 21650$	$0 \cdot 2172$	1.919	vvwB
$30 \overline{1}$	0.09367	-		*	501	$0 \cdot 21755$	02172	1919	vw
221	0.09441	0.09442	2.912	S	232	$0 \cdot 21806$			
		0.0980	$2 \cdot 858$	vvvw	$40 \overline{2}$	$0 \cdot 22148$	-	-	-
301	$0 \cdot 10027$			*	150	$0 \cdot 22438$ \}	$0 \cdot 22498$	$1 \cdot 887$	
311	$0 \cdot 10233$	$0 \cdot 10213$	$2 \cdot 801$	vs	431	$0 \cdot 225675$	$0 \cdot 2248$	1887	mw
031	$0 \cdot 10399$	-		-	511	$0 \cdot 22621$	-	-	
002	$0 \cdot 10420\}$	$0 \cdot 10495$	2.768		501	$0 \cdot 22855$	-	-	*
320	$0 \cdot 10556\}$	$0 \cdot 10495$	$2 \cdot 768$	mw	412	$0 \cdot 23014$	$0 \cdot 2298$	$1 \cdot 866$	vvw
311	$0 \cdot 10893$	-	-	-	520	$0 \cdot 23164$	-	-	
230	$0 \cdot 10946$ \}	$0 \cdot 10957$	$2 \cdot 703$	m	341	$0 \cdot 23223$	-	-	*
102	$0 \cdot 10988$)	$0 \cdot 10957$	$2 \cdot 708$	n	003	$0 \cdot 23445$	-	-	*
131	$0 \cdot 11077$	-	-	-	431.	$0 \cdot 23447$	-	\cdots	
012	$0 \cdot 11286$				511	$0-23721$			
131	$0 \cdot 11297$	$0 \cdot 11369$	$2 \cdot 655$	m	341	$0 \cdot 23883$	$0 \cdot 23853$	1.833	vw
102	$0 \cdot 11428)$					further:			
112	$0 \cdot 11854$	$0 \cdot 11867$	$2 \cdot 600$	m					
112	$0 \cdot 12294$	$0 \cdot 1221$	2.559	vvw	d obs.	\boldsymbol{I}		d obs.	I
400	$0 \cdot 12608$	$0 \cdot 1260$	$2 \cdot 520$	vVW	1.816	vW		1.463	mw
321	$0 \cdot 12831$			-	1.789	wBB		$1 \cdot 446$	mwB
202	$0 \cdot 13132$	$0 \cdot 13124$	$2 \cdot 473$	w	1.752	vvw		$1 \cdot 428$	vvw
231	$0 \cdot 13331$	-	-	-	1.729	mw		$1 \cdot 417$	vw
410	$0 \cdot 13474$	$0 \cdot 13468$	$2 \cdot 438$	m	1.712	w		$1 \cdot 402$	vw
321	$0 \cdot 13191$	-	-	-	$1 \cdot 694$	mwB		$1 \cdot 379$	mwB
231	0.13771			-	1.669	vw		$1 \cdot 353$	vwB
040	$0 \cdot 13856$	0.1385	2.403	VW	1.657	vvw		$1 \cdot 326$	mw
022	$0 \cdot 13884$	-		-	1.639	vw		$1 \cdot 301$	vW
212	0. 13998	-	-	-	1.613	vvw		$1 \cdot 286$	vw
202	$0 \cdot 14012$	-		-	1.605	w		1.273	vw
$12 \overline{2}$	$0 \cdot 14452$	$0 \cdot 14488$	$2 \cdot 349$	vW	1.591	w		$1 \cdot 255$	w
140	$0 \cdot 14644$	-	-	-	1-574	vvw		1-231	w
407	$0 \cdot 14773$	—	-	*	1-558	vw		$1 \cdot 227$	w
212	$0 \cdot 14878)$				1.540	vyw		$1 \cdot 202$	VVW
330	$0 \cdot 14886$	$0 \cdot 14855$	$2 \cdot 321$	mw	1.528	mw		$1 \cdot 170$	vw
122	$0 \cdot 14892$				1.518	wB		$1 \cdot 144$	vvw
-	-	$0 \cdot 1538$	2.28	vyvw	1.499	vw		$1 \cdot 131$	vvw
411	$0 \cdot 15639$			-	1.490	vVw		$1 \cdot 117$	w
401	$0 \cdot 15653$	-	-	*	$1 \cdot 482$	vw		1-103	w
					and 1	1 more bro	ad lines		

zone of reflections is present, with odd orders of $0 k 0$ probably absent; assuming that the rectangularity of this zone is not accidental, the symmetry must be monoclinic or higher. The first line not indexable as $h k 0$ has $d 4 \cdot 28 \AA$, and there are only four other lines of this type with spacings larger than $2 \cdot 8 \AA$; assuming these five are of type $h k 1$, they may be indexed by a modification of Vand's method, ${ }^{1}$ and give a unique solution with b as the monoclinic symmetry axis: $a 10 \cdot 09, b 9 \cdot 62, c 5 \cdot 55_{0} \AA$ (all $\pm 0.01 \AA$), $\beta 92 \cdot 2^{\circ} \pm 0 \cdot 2^{\circ}$. Values of $\sin ^{2} \theta$ for all possible diffractions as far as $d 1.83 \AA$ have been calculated (table II) ; they agree well with the observed values, and the good proportion of possible diffractions actually observed at spacings greater than $2 \cdot 5 \AA$ suggests that the cell is most probably correct. There are, however, a number of extremely weak lines that cannot be indexed on this cell and do not appear to be due to impurities. They could be indexed by doubling a or b or both.

No diffractions of type $0 k 0$ with k odd or $h 0 l$ with l odd were observed, which would lead to the space-group $P 2_{1} / c$. In this space-group there are only twofold and fourfold equivalent positions, whereas the celldimensions, analysis, and density indicate a cell-content $\mathrm{Cu}_{2} \mathrm{Fe}_{4}\left(\mathrm{AsO}_{4}\right)_{3}$ $(\mathrm{OH})_{7} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (with some uncertainty over the water content), in which the number of AsO_{4} groups is odd; it does not seem possible that the chemical data or density could be far enough out to lead to even numbers of Cu, Fe, and As atoms in the unit cell, and both the 'systematic' absences must be accidental, leading to space groups $P 2$, $P m$ or $P 2 / m$. Confirmation of the unit-cell, space-group, and water content must await the discovery of better crystallized material.

[^1]
[^0]: 1 The samples taken for X-ray study were usually only about $10-30 \mu \mathrm{~g}$; samples of $1-3 \mathrm{mg}$ were collected for chemical analysis with some difficulty.

[^1]: ${ }^{1}$ V. Vand, Acta Cryst., 1948, vol. 1, p. 290.

