A scheme of cation distribution in the amphiboles

By Subrata Ghose, M.Sc., M.S., Ph.D.
Inst. Kristallogr. Petrogr., Eidgenössische Technische Hochschule, Sonneggstrasse 5, Zürich 6, Switzerland

[Taken as read 14 January 1965]

Abstract

Summary. The four principles governing the cation distribution in various octahedral metal sites in the amphibole structure are : Ionic size-the M_{4} position prefers large cations like $\mathrm{Ca}^{2+}, \mathrm{Na}^{+}$; charge balance-when the M_{4} position is occupied by a monovalent ion, like $\mathrm{Na}^{+}, \mathrm{Li}^{+}$, the neighbouring M_{2} position is occupied by a trivalent ion like $\mathrm{Al}^{3+}, \mathrm{Fe}^{3+}$; role of the strongly polarizing cations-cations like Fe^{2+} prefer the M_{4} site, since they tend to form covalent bonds with the O_{4} oxygens; and the role of the (OH) ions-these form part of the brucite layer and repel large or strongly polarizing cations, which tend to distort the regularity of the sheet structure.

The Al-Si distribution in the two different tetrahedral sites are governed by three principles: relief of the $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ bond strain- Al^{3+} in the Si_{1} site causes fewer Si^{4+} cations to share more than two anions with other Si^{4+} cations; charge balancewith the introduction of alkali ions in the ' A ' position, Al^{3+} is introduced in the Si_{1} position, since the coordinating oxygens around the A position mostly belong to Si_{1}; and steric considerations-occupation of the M_{4} site by a large cation tends to rotate the Si_{2} tetrahedron anticlockwise; Al^{3+} substitution in the Si_{1} site rotates the Si_{1} tetrahedron clockwise and thus the regularity and the constancy of the repeat distance of the silicate double chain is maintained.

Based on these principles, a scheme of cation distribution in the $M_{1}, M_{2}, M_{3}, M_{4}$, A, Si_{1}, and Si_{2} positions in the amphibole structure has been derived for most of the common amphibole varieties, except richterite, whose position is anomalous from a crystallochemical point of view.

AMPHIBOLES are important rock-forming minerals with the general formula $X_{2-3} Y_{5} Z_{8} \mathrm{O}_{22}(\mathrm{OH}, \mathrm{F}, \mathrm{O})_{2}$, where X is $\mathrm{Na}^{+}, \mathrm{Li}^{+}, \mathrm{K}^{+}$, $\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Mn}^{2+}$, etc., Y is $\mathrm{Mg}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Al}^{3+}, \mathrm{Fe}^{3+}, \mathrm{Ti}^{4+}, \& c$, and Z is $\mathrm{Si}^{4+}, \mathrm{Al}^{3+}, \mathrm{Fe}^{3+}$, \&c. The structure of an amphibole essentially consists of two silicate double chains having the formula $\mathrm{Si}_{4} \mathrm{O}_{11}$ and a strip of Y type metal ions in octahedral coordination with oxygen and hydroxyl ions sandwiched between them. These silicate double chains are slightly curved away from the layer of metal atoms to effect a better fit between the octahedral metal layer and the tetrahedral silicate layer. The resulting talc-like strips are held together mostly by the X type cations. There are open channels in the structure running parallel to the extension of the silicate double chains, which are some-
times occupied by alkali or alkaline earth cations, like $\mathrm{Na}^{+}, \mathrm{K}^{+}$or Ca^{2+}. The structure of cummingtonite as an example of a typical amphibole is shown in fig. 1.

In this paper the possible cation ordering in the various octahedral and tetrahedral sites in the amphibole structure permitted by the symmetry of the known space-groups and cell-dimensions will be discussed

Fig. 1. Projection of the crystal structure of cummingtonite on (001). (After Ghose, 1961.)
for different varieties of naturally occurring amphiboles. The proposed scheme of cation ordering is expected to provide a working model for further experiments to determine the cation distribution in amphiboles more exactly.

Cation distribution in the octahedral sites

In contrast to pyroxenes there are usually four crystallographically different octahedral sites in amphiboles, M_{1}, M_{2}, M_{3}, and M_{4}. Of these the M_{4} site is occupied by the X type cation and is similar to the $M_{\text {II }}$ position in the pyroxene (see Ghose, 1962). This site has a highly distorted octahedral coordination when it is occupied by $\mathrm{Fe}^{2+}, \mathrm{Mg}^{2+}$ or Mn^{2+}. The coordination increases to eight when it is occupied by Ca^{2+} or Na^{+}. The neighbouring M_{2} position has a regular octahedral coordination of oxygen ions only and is very similar to the M_{I} position of the pyroxene. M_{1} and M_{3} sites have no parallel in the pyroxene
structure, since they have a very regular octahedral coordination consisting of four oxygen and two hydroxyl ions. These (OH) ions may sometimes be partially replaced by fluorine or chlorine, and in the oxidized or high temperature varieties by oxygen ions. In addition, there is the ' A ' position ($0, \frac{1}{2}, 0$) with a maximum of ten-fold coordination.

The following principles govern the cation distribution in the octahedral sites: M_{1}, M_{2}, M_{3}, and M_{4} of amphiboles, irrespective of their orthorhombic or monoclinic symmetry.

Ionic size. The M_{4} site has a highly distorted six-fold or eight-fold coordination and can accommodate large cations like Ca^{2+} or Na^{+}(not K^{+}, however) in the monoclinic amphiboles. Alkali ions in excess of $4(\mathrm{Ca}+\mathrm{Na})$ ions per unit cell are accommodated in the ' A ' site. In the orthorhombic amphiboles, the M_{4} site has a six-fold coordination and can accommodate ions only with sizes equal to or smaller than those of $\mathrm{Mg}^{2+}, \mathrm{Fe}^{2+}$. Larger cations like Ca^{2+} in the M_{4} site cause a distortion in the regularity of the silicate chain packing and the symmetry is lowered to monoclinic.

Charge balance. When the M_{4} site is occupied by a monovalent ion like Na^{+}, the neighbouring M_{2} site is occupied by a trivalent ion like Al^{3+} or Fe^{3+} (Whittaker, 1949, 1960). In some high temperature amphiboles, where some (OH$)^{-}$ions have been replaced by O^{2-}, an M_{3} site (likewise the M_{1} site) can be occupied by a trivalent or even a tetravalent ion, like Fe^{3+} or Ti^{4+} (Mueller, 1962).

Role of the strongly polarizing cations. Strongly polarizing cations like Fe^{2+} tend to form covalent bonds with oxygens and prefer the M_{4} site (Ghose, 1961, 1962). When two different types of strongly polarizing cations are present, they will tend to avoid each other.

Role of the (OH) ions. The (OH) ions form part of a brucite-type sheet structure with cations at the M_{3} and M_{1} sites, where the coordination is nearly ideally octahedral. Strongly polarizing cations like Fe^{2+} tend to distort this sheet and hence are repelled from the M_{3} and M_{1} sites. The fact that among coexisting orthopyroxenes and cummingtonites the latter are relatively richer in Mg^{2+} (Kranck, 1961) is explained by this principle.

Cation distribution in the tetrahedral sites

In amphiboles there are two crystallographically different tetrahedral sites, Si_{1} and Si_{2}. The following principles govern the cation distribution in the tetrahedral sites:

Relief of $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ bond strain. Si_{1} shares three anions with other fourcoordinated positions, while Si_{2} shares only two. DeVore (1957) has pointed out that ordering of Al^{3+} in the Si_{1} site is more likely, since ' Al^{3+} in this position causes fewer Si^{4+} cations to share more than two anions with other Si^{4+} cations' and hence helps to relieve the $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ bond strain.

Charge balance. With the introduction of alkali or alkaline earth ions in excess of $4(\mathrm{Ca}+\mathrm{Na})$ per unit cell, Al^{3+} or Fe^{3+} is simultaneously introduced in the tetrahedral sites to balance the charge (Warren, 1930). The ' A ' site, where these excess alkali or alkaline earth cations are accommodated, has a maximum of ten-fold coordination. This maximum coordination is probably realized, when the ' A ' site is occupied by $\mathrm{K}^{+}(r=1.33 \AA)$. This site, however, is more commonly occupied by $\mathrm{Na}^{+}(r=0.95 \AA)$, in which case it is likely that four of the O_{5} or O_{6} oxygens are drawn closer to the ' A ' site and the coordination becomes essentially six-fold. These coordinating oxygens, including the two closest ones, O_{7}, belong to the Si_{1} tetrahedra. To balance the charge, Si_{1} position must take some Al^{3+} (or Fe^{3+}). Typical $\mathrm{Al}^{3+}: \mathrm{Si}^{4+}$ ratios in hornblendes are $1: 7$ or $2: 6$. Hence, the Si_{1} site will have Al $\frac{1}{4}$ Si $\frac{3}{4}$ or $\mathrm{Al} \frac{1}{2} \mathrm{Si} \frac{1}{2}$. In muscovite the Al-Si ordering is similar, with Al $\frac{1}{2} \mathrm{Si} \frac{1}{2}$ in the Si_{1} site and Si in the Si_{2} site (Radoslovich, 1960). When the Si_{1} site in the amphibole is occupied by $\mathrm{Si} \frac{1}{2} \mathrm{Al} \frac{1}{2}, \mathrm{O}_{7}$ gets a charge contribution of $\frac{7}{4}$ from two neighbouring Si_{1} sites. The remaining charge must be balanced by Na^{+}at the ' A ' site. Assuming a regular octahedral coordination, the charge contribution from Na^{+}will be only $\frac{1}{6}$. A closer bond between Na^{+}and the O_{7} oxygens is therefore likely than between Na and O_{5} or O_{6} oxygens. The resulting coordination-polyhedron around Na^{+}will then be a squashed octahedron, as found in natrolite, $\mathrm{Na}_{2} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{10} .2 \mathrm{H}_{2} \mathrm{O}$ (Meier, 1960) for example.

The steric consideration. In spite of the substitution of Si^{4+} by Al^{3+} in the tetrahedral sites in amphiboles, the repeat distance of the double chains remains remarkably constant, namely $5 \cdot 30 \pm 0 \cdot 03 \AA$. (For a list of the cell dimensions of amphiboles, see Deer, Howie, and Zussman, 1963, p. 267). In view of the Al-Si substitution, as well as the occupation of the M_{4} site by cations of various sizes, the Si_{1} and Si_{2} tetrahedra must rotate with $\mathrm{Si}_{1}-\mathrm{O}_{1}$ and $\mathrm{Si}_{2}-\mathrm{O}_{2}$ as axes to achieve this end (fig. 2). When the M_{4} site is occupied by a large cation like Ca^{2+} or Na^{+}, the O_{4} oxygens are pushed away from the M_{4} site and the Si_{2} tetrahedron undergoes an anticlockwise rotation. If Al^{3+} is substituted in the $\mathrm{Si}_{\mathbf{2}}$ site, the ($\mathrm{Al}, \mathrm{Si})-\mathrm{O}$ bond length increases and the $\mathrm{Si}_{\mathbf{2}}$ tetrahedron must
rotate further to keep the chain-length constant. On the other hand, if Al^{3+} is substituted for Si^{4+} in the Si_{1} position, the Si_{1} tetrahedron rotates clockwise. The latter seems more plausible sterically, since the resulting chain will be regular, with both Si_{1} and Si_{2} tetrahedra about equally rotated in opposite directions.

Fig. 2. Orthogonal projection of the silicate double chains in tremolite on (100) in $I 2 / m$ orientation.
(After Ghose, 1961.)

Discyssion

The scheme of cation ordering in amphiboles presented in table I is essentially idealized and only attempts to show the trend. In nature the degree of order, as well as the metal content in various octahedral and tetrahedral sites in a particular variety of amphibole will be principally a function of temperature. However, the amphiboles formed in

 $\quad \begin{aligned} & M_{2} \\ & \mathrm{Mg}^{2+} \\ & \mathrm{Mg}^{2+} \\ & \mathrm{Al}^{3+}, \mathrm{Fe}^{3+} \\ & \mathrm{Mg}^{2+} \\ & \mathrm{Mg}^{2+} \\ & \mathrm{Fe}^{2+}>\mathrm{Mg}^{2+} \\ & \mathrm{Fe}^{2+}>\mathrm{Mg}^{2+} \\ & \mathrm{Fe}^{2+}>\mathrm{Mg}^{2+} \\ & \mathrm{Fe}^{2+}>\mathrm{Mg}^{2+}\end{aligned}$
 0
+
+
+
+
0
1

metamorphic rocks (amphibolite through to granulite facies) at least are expected to show pronounced degrees of cation ordering.

Detection of cation order by X-ray diffraction, particularly in the M_{1}, M_{2}, and M_{3} sites is not always easy, since several of the ions involved, namely $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Al}^{3+}, \mathrm{Si}^{4+}$, have very similar X-ray scattering powers. Therefore, sole reliance on the peak heights in electrondensity maps does not always lead to unambiguous results. Application of other methods, e.g. nuclear magnetic resonance, for studying the distribution of nuclei like ${ }^{23} \mathrm{Na},{ }^{27} \mathrm{Al},{ }^{7} \mathrm{Li}, \& \mathrm{c}$., is complicated by the ubiquitous presence of strongly ferromagnetic nuclei like ${ }^{57} \mathrm{Fe}$. Optical measurements, particularly infra-red absorption spectra of natural amphiboles unheated and heated (under proper water and oxygen pressures), as well as of amphiboles synthesized under various temperature and pressure conditions, may provide some indication of the degree of cation order-disorder.

From a detailed refinement of the structure of a cummingtonite based on three-dimensional X-ray data, it was found that M_{4} site is occupied by $75 \% \mathrm{Fe}^{2+}, 25 \% \mathrm{Mg}^{2+}$, the M_{2} site by $85 \% \mathrm{Mg}^{2+}, 15 \% \mathrm{Fe}^{2+}$, and the M_{1} and M_{3} sites by $67 \% \mathrm{Mg}^{2+}$ and $33 \% \mathrm{Fe}^{2+}$ (Ghose, 1961). A theoretical curve for the distribution of Mg^{2+} and Fe^{2+} among the lattice sites of cummingtonite has been derived by Mueller (1962) from the functions of heterogeneous ion-exchange equilibria for coexisting cummingtonite-actinolite. The derived distribution is in good agreement with that obtained by Ghose.

In Bolivian crocidolite the occupation of the M_{4} site principally by Na^{+}and the M_{2} site principally by Fe^{3+} has been confirmed by Whittaker (1949) from an electron density projection on (001). In view of the $\mathrm{Mg}^{2+}-\mathrm{Fe}^{2+}$ ordering found in cummingtonite, it is likely that in crocidolite also the M_{4} site is occupied by some Fe^{2+} in addition to $0.69 \mathrm{Na}^{+}$, and not all by Mg^{2+} as suggested by Whittaker. Recently, Ernst (1963) has detected two pressure polymorphs of glaucophane synthesized at $800^{\circ} \mathrm{C}$, which differ only in cell volumes, but not in symmetry; the phase transition is second order. According to Ernst, in the high pressure phase Al is concentrated in the M_{2} site and is more randomly distributed among all octahedral positions in the low pressure phase. However, for magnesio-riebeckite and riebeckite no change in cell-volumes could be detected under various temperature and pressure conditions, presumably because the cations Mg^{2+} and Fe^{3+} are similar in ionic size, as noted by Ernst.

The cation distribution scheme in holmquistite, as predicted by

Whittaker (1960), is essentially the same as is proposed here. From a consideration of the sizes of cations that are able to occupy M_{1} and M_{3} sites in orthorhombic amphiboles, Whittaker (1960) deduced that in the most iron-rich anthophyllites, M_{1} and M_{3} sites will be completely filled by Fe^{2+} and this is the compositional limit of orthorhombic $\mathrm{Mg}-\mathrm{Fe}$ amphiboles. This is contrary to the cation distribution scheme in anthophyllite predicted already in the light of the cation distribution found in cummingtonite (Ghose, 1962). If the M_{4} site is completely filled with Fe^{2+}, the composition becomes $\mathrm{Fe}_{2}^{2+} \mathrm{Mg}_{5} \mathrm{Si}_{8} \mathrm{O}_{22}(\mathrm{OH})_{2}$. Anthophyllites with about 25 mole $\%$ of the iron component occur most frequently in nature (Rabbitt, 1948), a fact which lends support to the cation distribution scheme proposed here. Except in gedrite, the presence of Al^{3+} in tetrahedral sites is always accompanied by $\mathrm{Na}^{+}, \mathrm{K}^{+}$, \&c. at the ' A ' site. Occupation of the ' A ' site by excess alkali ions ($\mathrm{Na}^{+}, \mathrm{K}^{+}$) in six hornblendes has been confirmed by Heritsch and his co-workers (1957, 1959) from electron density projections on (001). The failure to detect cation ordering in the M_{1}, M_{2}, and M_{3} sites in the hornblendes and actinolite (Zussman, 1955) studied by electron density projection on (001) alone may be ascribed to the difficulty stated earlier.

Richterite, as represented by the conventional formula $\mathrm{Na}_{2} \mathrm{Ca}\left(\mathrm{Mg}, \mathrm{Fe}^{2+}\right)$, $\mathrm{Si}_{8} \mathrm{O}_{22}(\mathrm{OH})_{2}$, does not fit into the scheme proposed here. In the absence of any Al^{3+} replacing Si^{4+}, it is difficult to understand how Na^{+}can be held in the ' A ' position, around which the coordinating oxygens are all charge satisfied. The anomalous richterite composition can be explained in two ways: either the published analyses may have been incorrect or carried out on impure materials or richterite may be a base-exchanged form of an original tremolite phase (Thompson, 1963). The second suggestion seems reasonable in view of the widespread occurrence of richterite in hydrothermally altered deposits (cf. Larsen, 1942).

In varieties like arfvedsonite, catophorite, \&c., where the M_{4} site is simultaneously occupied by monovalent and divalent cations, and the neighbouring M_{2} site by trivalent and divalent cations, it is expected that there are domains with short range order in which 'ionic couplings' of the type $\mathrm{Na}^{+}-\mathrm{Al}^{3+}, \mathrm{Ca}^{2+}-\mathrm{Mg}^{2+}$, \&c. still persist.

Acknowledgement. The author's thanks are due to Prof. J. B. Thompson, Jr. for discussions and a critical reading of the manuscript.

References

Deer (W. A.), Howie (R. A.), and Zussman (J.), 1963. The rock forming minerals, (London), vol. 2.

S. GHOSE ON AMPHIBOLES

DeVore (G. W.), 1957. Journ. Geol., vol. 65, pp. 178-195.
Ernst (W. G.), 1963. Amer. Min., vol. 48, pp. 241-260.
Ghost (S.), 1961. Acta Cryst., vol. 14, pp. 622-627.
-_ 1962. Amer. Min., vol. 47, pp. 388-394.
Heritsch (H.), Paulitsch (P.), and Walitzi (E. M.), 1957. Tschermaks Min. Petr. Mitt., vol. 6, pp. 215-225.
——, Bertoldi (G.), and Walitzi (E. M.), 1959. Ibid., vol. 7, pp. 210-217.
-_ and Kahler (E.), 1959. Ibid., pp. 218-234.
-- and Riechert (L.), 1959. Ibid., pp. 235-245.
Kranck (S. H.), 1961. Journ. Petr., vol. 2, pp. 137-184.
Larsen (E. S.), 1942. U.S. Geol. Surv., Prof. Paper 197-A.
Meier (W. M.), 1960. Zeits. Krist., vol. 113, pp. 430-444.
Morimoto (N.), Appleman (D. E.), and Evans (H. T.), 1960. Ibid., vol. 114, pp. 120-147.
Muleler (R. F.), 1962. Geochimica Acta, vol. 26, pp. 581-598.
Rabbitt (J. C.), 1948. Amer. Min., vol. 33, pp. 263-323.
Radoslovtch (E. W.), 1960. Acta Cryst., vol. 13, pp. 919-932.
Thompson (J. B., Jr.), 1963. Priv. comm.
Warren (B. E.) and Bragg (W. L.), 1929. Zeits. Krist., vol. 69, pp. 168-193.

- 1930. Ibid., vol. 72, pp. 493-517.
- and Biscoe (J.), 1931. Ibid., vol. 80, pp. 391-401.

Whittaker (E. J. W.), 1949. Acta Cryst., vol. 2, pp. 312-317.
—— 1960. Ibid., vol. 13, pp. 291-298.
Zussman (J.), 1955. Ibid., vol. 8, pp. 301-308.
[Manuscript received 10 January 1964.]

