SHORT COMMUNICATIONS

Note on the d.t.a. study of some rare Brazilian phosphate minerals

DIFFERENTIAL thermal analysis studies of phosphate minerals are not very well known. Only a few are recorded in the publications of the last decade.

Several new phosphate minerals from pegmatites and as satellite minerals in diamond sands have been reported in the last few years from Brazilian localities. Most of them appear seldom and in small quantities, and as such mineralogical data is often lacking on them.

	Locality		Peak temperatures in °C with intensities				
Mineral		Endothermic			Exothermic		
Arrojadite	Pedra Branca Pg., Pedra Lavrada, PB					780 W	
Brasilianite	Corrego Frio Pg., Minas Gerais	640 S					
Gorceixite	Diamantina, Minas Gerais	110 W	520 W–M				
Hurlbutite	Ico, Icozinho, Ceará State	_				—	
$\mathbf{Lazulite}$	João de Fogo Pg., Rio Grande do Norte	740 S					
$\mathbf{Lithiophilite}$	Boqueirão Pg. Parelhas, Rio Grande do Norte						
Metastrengite	Boqueirão Pg. Parelhas, Rio Grande do Norte	140 W	240 VS			570 W–M	
Moraesite	Sapucaia Pg., Minas Gerais	200 S	280 M	680 W			
Plumbogummite	Capão de Lana, Ouro Preto, Minas Gerais	520 M				630 W	720 VW
Scorzalite	Corrego Frio P., Minas Gerais	610 VS				960 S	
Svanbergite	Sands of Rio São João, Paraguassu	660 S				830 VW	
Vivianite	Patrimônio Pg., Paraíba State	100 VW	$\frac{250}{S}$	460 W	575 VW	560 W	
Vivianite	São João del Rei, Minas Gerais		240 VS	.,		300 VW	580 W

V-very; S-strong; M-medium; W-weak.

Differential thermal analysis study of these phosphates has been of interest in this Department and short communications have already been made on this aspect.^{1,2} This note brings together new data on some rare phosphates in Brazil.

The studies were made using a portable Eberbach set, with heating rate controlled to a 20° /min by the authors,³ and the results are tabulated above.

With two exceptions no data exists in the literature for these minerals. Details with a discussion of the heated product will be published elsewhere.

Thanks are due to the Director of the Divisão de Geologia e Mineralogia of the Departmento Nacional de Produção Mineral, Rio de Janeiro, for making available the type samples of phosphate minerals from Minas Gerais.

Dept^o de Mineralogia e Petrografia, Escola de Geologia de Pernambuco, Universidade do Recife, Recife, Brazil A. BHASKARA RAO

¹ A. Bhaskara Rao, 1961. Not. de Pesquisas, J. Clube Mineral, Univ. Recife, II, 3/4, 50.

² A. Bhaskara Rao and Judson Cunha e Silva. XVI Congr. Brasil. Geol., Porto Alegre, 1962 (Abstract) 21–23. An. da Acad. Brasil. Ciencias, vol. 36, 1964 (in press).

³ A. Bhaskara Rao and Judson Cunha e Silva, 1961, Not. de Pesquisas, J. Clube Mineral, Univ. Recife, II, 3/4, 49.

[Manuscript received 14 October 1964]

Scorodite from Brazil

A SAMPLE of dirty-green massive mineral was collected by one of us (J.A.V.C.) during a study of some pegmatites rich in cassiterite near Itapiuna, State of Ceará in northeastern Brazil. Since the occurrence is singular, a study was made of the mineral.

It is seen as lenticular masses and as concentrations in the heterogeneous pegmatite. Dirty green in colour with a light yellowish streak and a hardness of 4(Mohs), it occurs in intimate association with crystals of cassiterite, quartz, and some flakes of muscovite. Small druses are present in the sample, which are studded with finely crystalline material of the same colour. Some limonitic patches were noted, which are probably the resultant of some pyrite. Under the microscope it is seen to have faint coloration and no pleochroism. It is biaxial with a $2V_{\alpha} 60^{\circ}$. Some spherulitic masses were also observed in the section.

Chemical analysis of the sample disclosed a rather high quantity of As_2O_5 (51 %) and a normal amount of Fe_2O_3 (30 %) suggesting that the mineral is scorodite. Spectrochemical data showed some Bi and Sb.

The X-ray powder data obtained for the mineral gave good correspondence with scorodite $Fe'''(AsO_4).2H_2O$ (A.S.T.M. Index; Correia Neves, 1960).

428