# Crystallography of psilomelane, $A_{3} X_{6} M n_{8} O_{16}$ 

By Bibhuti Mukherjee, M.Sc., D.Phil.<br>Geological Survey of India, Calcutta

[Read 4 November 1965]


#### Abstract

Summary. Psilomelane has been redefined from single crystal study to be of orthorhombic symmetry with the space group $P 222$, the dimensions $a 9 \cdot 45, b 13 \cdot 90$, $c 5 \cdot 72 \AA$, and two molecules of $A_{3} X_{6} \mathrm{Mn}_{8}^{4}+\mathrm{O}_{10}$ per unit cell, where $A$ represents $\mathrm{Ba}^{2+}$, $\mathrm{Mn}^{2+}, \mathrm{Al}^{3+}, \mathrm{Fe}^{3+}, \mathrm{Si}^{4+}$ ete., and $X_{6}$ stands for $(\mathrm{O}, \mathrm{OH})_{6}$ with OH about 5 . This formula is very closely followed by 14 analyses of psilomelane, and the calculated density agrees fairly well with the observed density. The powder data of psilomelane cannot be indexed with Wadsley's monoclinic cell and the conditions for the space group $A \mathbf{2} / m$, proposed by Wadsley for his crystal, are not satisfied by the indexing. Wadsley's crystal was not psilomelane but probably an altered phase of Vaux's neotype specimen.

The electron micrograph of shining platy crystals of psilomelane shows some almost square-faced crystals whereas that of the botryoidal material consists only of particles with irregular edges. The dehydration product of psilomelane shows gradual shrinkage of the orthorhombic cell up to $500^{\circ} \mathrm{C}$, marked structural changes at $600^{\circ} \mathrm{C}$, and transformation at $800^{\circ} \mathrm{C}$ to a monoclinic phase, similar to hollandite.


PSILOMELANE, a hydrated barium manganese oxide, was first named and described by Haidinger (1831) for the 'smooth, black, uniform and botryoidal' mineral from Schneeberg, Saxony, but his description accompanying Turner's chemical analysis (1831) did not adequately define psilomelane as a single species with a definite chemical formula. Vaux (1937) defined psilomelane from Schneeberg and Cornwall as a distinct mineral with the formula $\mathrm{H}_{4}(\mathrm{Ba}, \mathrm{Mn})_{2} \mathrm{Mn}_{8}^{4+} \mathrm{O}_{20}$, derived from five chemical analyses (although Turner's analysis showed wide discrepancy); from X-ray study 'by both crystal and powder photographs' of psilomelane (specimens BM. 69160 and BM. 32687 from Schneeberg and Spitzleite, Saxony) Vaux proposed an orthorhombic symmetry with the dimensions, $a 9 \cdot 1, b 13 \cdot 7, c 2 \cdot 86 \AA$, without giving his method of derivation. Based on the same analyses of psilomelane two modified formulae were suggested by Fleischer and Richmond (1943) and by Palache, Berman, and Frondel (1944).

Wadsley (1953) studied the same specimens of psilomelane as Vaux (BM. 69160 and BM. 32687) and found monoclinic symmetry with the dimensions, $a 9 \cdot 56, b 2 \cdot 88, c 13 \cdot 85 \AA, \beta 92^{\circ} 30^{\prime}, Z 2$ for $\left(\mathrm{Ba}, \mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Mn}_{5} \mathrm{O}_{10}$
and space group $A 2 / m$. Wadsley determined these values from singlecrystal study about the $b$-axis of a tiny plate $(0 \cdot 1 \times 0 \cdot(06 \times 0.02 \mathrm{~mm})$ with ridged faces, separated from the outer crust of the botryoidal material of the specimen BM. 69160, and he observed that even this tiny plate was not a single crystal but a multiple one. Vaux (loc. cit.) as well as Wadsley (loc. cit.) stated that the powder photographs of the botryoidal core-material and the encrusted platy crystals of psilomelane were identical, but their powder data were not available. Fleischer and Richmond (1943) and Gruner (1943) reported powder data for psilomelane from Schneeberg. Fleischer (1960) derived the unit-cell contents per 20 oxygen atoms from 14 analyses of psilomelane and showed that with the unit-cell dimensions of Wadsley his formula is better than those proposed earlier:

Vaux (1937)
Fleischer and Richmond (1943)
Palache, Berman, and Frondel (1944)
Wadsley (1953)

$$
\begin{aligned}
& \mathrm{H}_{4}(\mathrm{Ba}, \mathrm{Mn})_{2} \mathrm{Mn}_{8}^{4+} \mathrm{O}_{20} \\
& \mathrm{Ba}\left(\mathrm{Mn}^{4+}, \mathrm{Mn}^{2+}\right)_{9} \mathrm{O}_{18} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{BaMn}{ }^{2+} \mathrm{Mn}_{8}^{4+} \mathrm{O}_{16}(\mathrm{OH})_{4} \\
& \left(\mathrm{Ba}, \mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Mn}_{10} \mathrm{O}_{20}
\end{aligned}
$$

Mukherjee (1959) studied two specimens of 'psilomelane' from Madhya Pradesh, India, and proposed a space group $P 2_{1} 2_{1} 2\left(D_{2}^{3}\right)$ for the orthorhombic cell with the dimensions, $a 8.254, b 13 \cdot 40, c 2.864 \AA$, using Lipson's method (1949) of derivation for the orthorhombic system from powder-spacing data. Mukherjee assumed Vaux's formula, without reporting the chemical analysis of his specimen, but his powder data are somewhat different from those reported by Gruner (1943).

## Vaux's psilomelane

The two specimens of psilomelane, BM. 69160 and BM. 32687, studied by Vaux were obtained from the British Museum through the courtesy of Dr. M. H. Hey. The specimen BM. 69160 consisted of shining minute platy crystals encrusted on the dull botryoidal core associated with quartz; specimen BM. 32687 was only of dull botryoidal material with quartz. The shining crystals showed the same powder pattern (taken with $\mathrm{Fe}-\mathrm{K} \alpha$ radiation) as the dull botryoidal material (fig. 1), but the powder photograph of the crystals was more distinct with enhanced intensity for weak and diffuse lines. The powder photograph of the same specimen BM. 69160 of psilomelane, taken at the British Museum by Dr. R. J. Davis (using Fe-K $\alpha$ radiation), is exactly identical with that taken by the author (fig. 1).

Single crystal data. A tiny crystal about $0.02 \times 0.03 \times 0.1 \mathrm{~mm}$ (off BM. 69160) having smooth shining faces and a ridged face on one side was selected for obtaining rotation and Weissenberg photographs about [001] using $\mathrm{Fe}-\mathrm{K} \alpha$ radiation. The $c$-axis from the layer-line spacings


Fig. 1. X-ray powder photographs of psilomelane (taken with Fe-K $\alpha$ radiation): A. dull botryoidal material of BM. 69160; в. type material of BM. 69160, taken at the British Museum by Dr. R. J. Davis (using powder camera of 114.6 mm diameter) ; c. shining crystals of BM. 69160 ; $\mathbf{D}$. dull botryoidal material of BM. 32687.
and the $a$ and $b$ axes from the zero-layer Weissenberg photograph about [001] were determined as $a 9 \cdot 45 \pm 0 \cdot 02, b 13 \cdot 90 \pm 0 \cdot 02$, $c 5 \cdot 72 \pm 0.02 \AA$. The angle between the $a$ and $b$ axes ( $a$ and $c$ axes of Wadsley) was found to be $90^{\circ}$ in the zero-layer Weissenberg photograph about the $c$-axis ( $b$-axis of Wadsley). The reflexions on the Weissenberg photographs appeared as elongated streaks, and the intensities satisfied the conditions for orthorhombic symmetry. The conditions limiting possible reflexions indicated that the space group is one of $P 222, P m m 2, P m m m$. The dimensions $a$ and $b$ are similar to those determined by Vaux but the $c$ axial length is double. Vaux's data were probably obtained from oscillation photographs.

Powder spacing data. The indexing of all the powder lines of psilomelane (off BM. 69160) with the orthorhombic axes a $9 \cdot 45, b 13 \cdot 90$,

Table I. Powder spacing data of psilomelane, BM. 69160, indexed on an orthorhombic cell with $a 9 \cdot 45, b 13 \cdot 90, c 5 \cdot 72 \AA$, together with an attempted indexing on Wadsley's monoclinic cell

Author's

|  |  |  | orthorhombic cell |  | Wadsley's monoclinic cell |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $I / I_{1}$ | $d(\AA)$ | $\sin ^{2} \theta_{\text {obs }}$ | hkl | $\sin ^{2} \theta_{\text {calc }}$ | hkl | $\sin ^{2} \theta_{\text {calc }}$ | $F_{\text {obs }}$ | $I_{p}$ |
| 10 | 9.50 | 0.0104 | 100 | 0.0105 | 100 | 0.0103 | 9 | 2 |
| 30 | $6 \cdot 93$ | 0.0195 | 020 | $0 \cdot 0194$ | 002 | 0.0196 | 26 | 13 |
| 7 | $5 \cdot 74$ | 0.0285 | 001 | 0.0286 | $\overline{1} 02$ | 0.0286 | 18 | 5 |
| 10 | 5.58 | 0.0301 | 120 | 0.0299 | 102 | 0.0311 | 22 | 8 |
| T | $4 \cdot 73$ | 0.0419 | 200 | 0.0420 | 200 | 0.0411 | 26 | 9 |
| 10 | 4.01 | 0.0583 | 121 | 0.0585 | 202 | 0.0582 | 30 | 10 |
| 40 | $3 \cdot 885$ | 0.0620 | 220 | $0 \cdot 0614$ | 202 | 0.0631 | 50 | 26 |
| 70 | $3 \cdot 465$ | 0.0780 | 040 | 0.0776 | 004 | 0.0783 | 61 | 34 |
| 40 | $3 \cdot 320$ | 0.0851 | 230 | 0.0856 | ] 04 | 0.0861 | 60 | 31 |
| 50 | $3 \cdot 240$ | 0.0892 | $\left\{\begin{array}{l} 140 \\ 221 \end{array}\right.$ | $0.0881$ $0.0900$ | 203 | 0.0888 | 0 | 0 |
| 30 | $2 \cdot 970$ | 0.1062 | 041 | $0 \cdot 1062$ | (\%) |  |  |  |
|  |  |  | (320 | 0.1138 | ${ }_{1} \mathbf{0} 0$ | 0.1130 | 0 | 0 |
| 70 | 2.875 | 0.1134 | 231 | $0 \cdot 1142$ | ¢ 204 | 0.1144 | 52 | 19 |
|  |  |  | 002 | $0 \cdot 1145$ |  |  |  |  |
| 7 | $2 \cdot 750$ | $0 \cdot 1239$ | \{ 301 | $0 \cdot 1231$ | 1110 | $0 \cdot 1232$ | 0 | 05 |
|  |  |  | \{ 102 | $0 \cdot 1250$ | 1204 | 0.1243 | 27 |  |
| 15 | $2 \cdot 660$ | $0 \cdot 1326$ | 150 | 0.1318 | 012 | $0 \cdot 1325$ | 0 | 0 |
|  |  |  | 022 | 0.1339 |  |  |  |  |
| 70 | 2.415 | $0 \cdot 1607$ | \{151 | $0 \cdot 1604$ | 211 | $0 \cdot 1602$ | 86 | 83 |
|  |  |  | 1212 | $0 \cdot 1613$ |  |  |  |  |
| 50 | $2 \cdot 360$ | $0 \cdot 1683$ | $\{400$ | $0 \cdot 1679$ | (113 | $0 \cdot 1691$ | 37 | 15 |
|  |  |  | (132 | $0 \cdot 1687$ | 1205 | $0 \cdot 1696$ | 0 | 0 |
| 10 | $2 \cdot 313$ | 0.1751 | \{ 060 | $0 \cdot 1746$ | 1006 | 0.1762 | 11 |  |
|  |  |  | [222 | $0 \cdot 1759$ | (212 | $0 \cdot 1762$ | 0 |  |
| 50 | $2 \cdot 254$ | $0 \cdot 1845$ | 160 | $0 \cdot 1851$ | (?) |  |  |  |
| 100 | 2.190 | $0 \cdot 1955$ | 401 | $0 \cdot 1964$ | $\overline{2} 13$ | 0.1945 | 101 | 100 |
|  |  |  | ${ }^{411}$ | $0 \cdot 2013$ |  |  |  |  |
| 50 | $2 \cdot 150$ | 0.2026 | 142 | $0 \cdot 2026$ | 213 | $0 \cdot 2018$ | 46 | 20 |
|  |  |  | 061 | $0 \cdot 2032$ |  |  |  |  |
| 10 | $2 \cdot 118$ | $0 \cdot 2089$ | 302 | $0 \cdot 2089$ | $¢^{\overline{3}} 11$ | $0 \cdot 2084$ | 40 | 15 |
|  |  |  |  | 0.28 | ( $\overline{2} 06$ | $0 \cdot 2097$ | 33 | 5 |

$F_{\text {obs }}$ Observed structure amplitudes of diffracted spots in single crystal zerolayer and lst-layer Weissenberg photographs about the $b$-axis (Wadsley, 1953, p. 436).
$I_{p}$ Intensity of Debye-Scherrer lines, calculated from Wadsley's $F_{\text {obs }}$.

## Table I (cont.)

Author's
orthorhombic cell

| $I / I_{1}$ | $d(\AA)$ | $\sin ^{2} \theta_{\text {obs }}$ | orthorhombic cell |  | Wadsley's monoclinic cell |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | hkl | $\sin ^{2} \theta_{\text {calc }}$ | $h k l$ | $\sin ^{2} \theta_{\text {cale }}$ | $F_{\text {obs }}$ | $I_{p}$ |
| 7 | 2.093 | 0.2139 | $\left\{\begin{array}{l} 161 \\ 312 \end{array}\right.$ | $\begin{aligned} & 0.2137 \\ & 0.2138 \end{aligned}$ | (?) |  |  |  |
| 15 | 2.021 | 0.2292 | 322 | $0 \cdot 2284$ | 312 | $0 \cdot 2288$ | 0 | 0 |
| 10 | 1.950 | 0.2465 | 1440 | $0 \cdot 2455$ | $\overline{1} 07$ | $0 \cdot 2457$ | 0 | 0 |
| 10 | 1.950 | $0 \cdot 2465$ | ( 152 | $0 \cdot 2463$ |  |  |  |  |
| 10 | 1-863 | $0 \cdot 2699$ | 360 | $0 \cdot 2691$ | [ $\overline{5} 02$ | 0.2702 0.2702 | 12 | < 1 |
|  |  |  | 360 | 0.2691 | $\overline{2} 15$ | 0.2702 | 43 | 14 |
| 70 | 1-820 | 0.2828 | \{ 520 | $0 \cdot 2817$ | 1502 | 0.2825 | 29 | 3 |
|  |  |  | ( 402 | $0 \cdot 2824$ | 215 | $0 \cdot 2826$ | 87 | 57 |
| 15 | 1.735 | 0.3111 | (521 | 0.3103 | 503 | $0 \cdot 3100$ | 0 | 0 |
|  |  |  | 080 | $0 \cdot 3104$ |  |  |  |  |
|  |  |  | 133 | 0.3118 |  |  |  |  |
| 25 | 1.709 | 0.3208 | 180 | $0 \cdot 3209$ | (?) |  |  |  |
| 40 | 1-634 | 0.3511 | $\{303$ | $0 \cdot 3520$ | (\%) |  |  |  |
| 40 | 1034 | -351 | 1072 | $0 \cdot 3521$ | (.) |  |  |  |
| 70 | 1-560 | $0 \cdot 3848$ | $\left\{\begin{array}{l}362 \\ 550\end{array}\right.$ | 0.3837 | $\overline{2} 17$ | 0.3851 | 100 | 61 |
|  |  |  | $\bigcirc 550$ | 0.3836 0.4034 |  |  |  |  |
| 15 | 1.523 | $0 \cdot 4040$ | $\left\{\begin{array}{l}190 \\ 452\end{array}\right.$ | 0.4034 0.4036 | \{217 | 0.40250.4044 | 48 | 14 |
|  |  |  | $\left\{\begin{array}{l}452 \\ 380\end{array}\right.$ | $0 \cdot 4036$ $0 \cdot 4048$ | $\{\overline{5} 13$ |  |  |  |
| 15 | 1-495 | 0.4194 | 532 | 0.4204 | 308 | $0 \cdot 4205$ | 22 | $<2$ |
| 60 | $1 \cdot 422$ | $0 \cdot 4634$ | $\{014$ | $0 \cdot 4630$ | 120 | $0 \cdot 4623$ | - |  |
|  |  |  | [291 | 0.4635 | ¢ 604 | $0 \cdot 4628$ | 14 | $<1$ |
| 70 | 1.399 | 0.4785 | (024 | 0.4775 | 218 | $0 \cdot 4771$ | 0 | 0 |
|  |  |  | ( 480 | 0.4783 |  |  |  |  |
| 10 | 1.353 | 0.5119 | $\left\{\begin{array}{l}622 \\ 134\end{array}\right.$ | 0.5116 | $\left\{\begin{array}{l}605 \\ 701\end{array}\right.$ | 0.5105 | 0 | 0 |
|  |  |  | $\begin{array}{r}134 \\ 503 \\ \hline\end{array}$ | 0.5122 0.5199 | 1701 | 0.5124 | 0 | 0 |
| 10 | 1.341 | 0.5208 | 472 | 0.5200 | $(?)$(2.0.10 |  |  |  |
| 7 | $1 \cdot 314$ | 0.5427 | 701 | 0.5427 |  | 0.5428 | 30 | 3 |
| 7 | 1.314 |  | 234 | 0.5437 | 124 | $0 \cdot 5430$ | - | - |
| 20 | 1.296 | 0.5578 | ( 314 | 0.5574 | (?) |  |  |  |
|  |  |  | 1730 | 0.5577 |  |  |  |  |
|  |  |  | ${ }^{244}$ | 0.5777 |  |  |  |  |
| 7 | $1 \cdot 273$ | 0.5782 | 183 | 0.5786 | (?) |  |  |  |
|  |  |  | 054 | 0.5793 |  |  |  |  |

Table II. Chemical analyses of psilomelane,

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mn ${ }^{\text {+ }}$ | 8.20 | $8 \cdot 21$ | 8.48 | $8 \cdot 32$ | $8 \cdot 34$ | $8 \cdot 14$ | $8 \cdot 24$ |
| $\mathrm{Mn}^{2+}$ | 1.07 | 1.07 | $1 \cdot 17$ | $1 \cdot 61$ | 1.55 | 1.78 | 1.04 |
| Ba | 1.22 | 1.22 | 0.85 | 1.09 | $1 \cdot 16$ | $1 \cdot 16$ | 1.02 |
| Si | $0 \cdot 09$ | 0.09 | 0.01 | $0 \cdot 11$ | 0.05 | $0 \cdot 17$ | 0.02 |
| Al | 0.08 | 0.07 | $0 \cdot 15$ | - | - | - | 0.03 |
| Fe | 0.02 | $0 \cdot 03$ | 0.02 | $0 \cdot 04$ | - | - | 0.02 |
| Ca | 0.04 | 0.05 | $0 \cdot 12$ | - | - | - | $0 \cdot 14$ |
| Mg | 0.04 | 0.04 | 0.03 | 0.08 | - | - | $\cdots$ |
| Na | - | - | - | 0.01 | - | - | 0.16 |
| K | - | - | 0.09 | $0 \cdot 02$ | - | - | $0 \cdot 13$ |
| Cu | 0.07 | 0.04 | 0.05 | - | -- | - | $<0.01$ |
| Co | $0 \cdot 13$ | $0 \cdot 14$ | 0.07 | - | - | - | - |
| W | 0.04 | 0.03 | - | $0 \cdot 01$ | - | - |  |
| As | - | - | - | - | - | - | $0 \cdot 20$ |
| H | 5•17 | $5 \cdot 20$ | $4 \cdot 87$ | 4.50 | $5 \cdot 01$ | $4 \cdot 87$ | $5 \cdot 11$ |
| $\mathrm{Mn}+A$ | 11.00 | 10.99 | 11.04 | 11.29 | $11 \cdot 10$ | 11.25 | 11.01 |
| $D_{\text {cale }}$ | 4.70 | $4 \cdot 69$ | $4 \cdot 53$ | $4 \cdot 69$ | $4 \cdot 69$ | $4 \cdot 71$ | $4 \cdot 59$ |
| $D_{\text {obs }}$ | $4 \cdot 71$ | 4.70* | - | $4 \cdot 697$ | - | - | $4 \cdot 45$ |
| $D_{\mathrm{F}}{ }^{\dagger}$ | $\left\{\begin{array}{l} 4 \cdot 77 \\ 4 \cdot 82^{2} \end{array}\right.$ | 4.76 | $4 \cdot 49$ | 4.69 | - | - | $4 \cdot 64$ |

* Determined by the author on the Berman density balance, using bromoform.
$\dagger$ Calculated by Fleischer from Wadsley's formula and cell-dimensions.
$\ddagger$ Wadsley's calculated value.

1. Vaux's 1 from Schneeberg, Saxony ; British Museum No. BM. 69160. Analyst, H. Bennett.
2. Vaux's 2 from Spitzleite, Eibenstock, Saxony; British Museum No. BM. 32687. Analyst, H. Bennett.
3. Vaux's 3 from Restormel mine, Lostwithiel, Cornwall; British Museum No. BM. 27214. Analyst, H. Bennett.
4. Vaux's 4 from Schneeberg, Saxony; specimen in the Academy of Natural Sciences, Philadelphia. Analyst, H. J. Hallowell.
5. Vaux's 5 from Schneeberg, Saxony. Analyst, E. Turner. ( $\mathrm{H}_{2} \mathrm{O}+$ is taken as $4 \cdot 2$, the average value of the other three samples from the same locality.)
6. Fleischer's B from Romanèche, France. Analyst, E. Turner.
7. Fleischer's 3 from Romanèche, France. U.S. National Museum No. R 2232. Analyst, M. Fleischer.
recalculated as ratios to 22 oxygen

|  | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Mn}^{4+}$ | $7 \cdot 91$ | $8 \cdot 37$ | 8.70 | $8 \cdot 45$ | $8 \cdot 04$ | $8 \cdot 46$ | $8 \cdot 19$ |
| $\mathrm{Mn}^{2+}$ | $1 \cdot 16$ | $1 \cdot 04$ | $0 \cdot 88$ | $1 \cdot 01$ | $1 \cdot 10$ | 0.90 | $1 \cdot 13$ |
| Ba | 0.96 | $1 \cdot 23$ | 0.90 | 1.01 | 0.99 | 0.92 | $0 \cdot 93$ |
| Si | 0.07 | $0 \cdot 08$ | - | $0 \cdot 14$ | 0.08 | 0.07 | 0.03 |
| Al | - | $0 \cdot 09$ | (0.10 | $0 \cdot 06$ | - | 0.05 | - |
| Fe | $0 \cdot 11$ | $0 \cdot 02$ |  | 0.01 | 0.04 | $0 \cdot 15$ | $0 \cdot 03$ |
| Ca | 0.07 | - | - | - | $0 \cdot 34$ | 0.05 | 0.01 |
| Mg | $0 \cdot 44$ | - | - | 0.06 | 0.07 | 0.05 | 0.03 |
| Na | $0 \cdot 06$ | $0 \cdot 02$ | - | 0.04 | $0 \cdot 12$ | $0 \cdot 10$ | -- |
| K | 0.02 | $0 \cdot 02$ | $0 \cdot 18$ | 0.06 | $0 \cdot 11$ | $0 \cdot 08$ | $0 \cdot 10$ |
| Cu | - | - | - | 10.01 | - | - | 0.01 |
| Co | - | - | - |  | $0 \cdot 03$ | - | $0 \cdot 01$ |
| W | $0 \cdot 22$ | $0 \cdot 03$ | - | 0.02 | - | 0.06 | $0 \cdot 13$ |
| As | - | - | - | - | - | - | $0 \cdot 03$ |
| V | - | -- | - | - | $0 \cdot 13$ | - | - |
| /n | - | - |  | 0.01 | - | - | $0 \cdot 02$ |
| Sr | - | -- | - | - | - | $0 \cdot 12$ | - |
| H | 5.08 | $5 \cdot 12$ | $5 \cdot 15$ | $5 \cdot 02$ | $5 \cdot 45$ | $4 \cdot 65$ | 5.72 |
| $\mathrm{Mn}+$ A | 11.02 | $10 \cdot 90$ | $10 \cdot 76$ | 10.88 | 11.05 | 11.01 | 10.65 |
| $D_{\text {cale }}$ | $4 \cdot 65$ | $4 \cdot 67$ | $4 \cdot 50$ | $4 \cdot 56$ | $4 \cdot 55$ | $4 \cdot 58$ | $4 \cdot 57$ |
| $D_{\text {obs }}$ | - | $4 \cdot 74$ | 4.61 | $4 \cdot 56$ | $4 \cdot 41$ | $4 \cdot 44$ | $4 \cdot 43$ |
| $D_{\text {F }}{ }^{\dagger}$ | $4 \cdot 72$ | $4 \cdot 73$ | $4 \cdot 56$ | $4 \cdot 67$ | 4-66 | $4 \cdot 60$ | $4 \cdot 70$ |

$\dagger$ Calculated by Fleischer from Wadsley's formula and cell-dimensions.
8. Fleischer's 1 from Sodaville, Nevada; P. F. Kerr's sample. Analyst, F. A. Gonyer. $\left(\mathrm{H}_{2} \mathrm{O}+\right.$ is taken as $4 \cdot 38$; on the basis of $100 \%$ of the formula weight the excess value of $0.3 l$ is assumed to be due to $\mathrm{H}_{2} \mathrm{O}-$.)
9. Fleischer's 2 from Mayfield prospect, Chispa Siding, Jeff Davis Co., Texas; S. G. Lasky's sample. Analyst, W. T. Schaller.
10. Fleischer's J from Pilbara, W. Australia; A. D. Wadsley's sample. $\left(\mathbf{H}_{2} \mathrm{O}+\right.$ is taken as $4 \cdot 65$; on the basis of $100 \%$ of the formula weight the excess value of 0.49 is assumed to be due to $\mathrm{H}_{2} \mathrm{O}-$.)
11. Fleischer's 4 from Tolbard mine, Paymaster Dt., Imperial Co., California; J. B. Hadley's sample. Analyst, M. Fleischer.
12. Fleischer's 5 from Manila, Utah (exact locality unknown); U.S. National Museum No. 94341. Analyst, M. Fleischer.
13. Fleischer's 6 from Hoggett manganese group, Hidalgo Co., New Mexico;
S. K. Neuschel's sample. Analyst, M. Fleischer.
14. Fleischer's 7 from Talamantes mine near Parral, Chihuahua, Mexico; P. D. Trask's sample. Analyst, M. Fleischer.
c $5.72 \AA$ is most satisfactory (table I). The powder-spacing data are identical with those reported by Gruner (1943) for psilomelane from Schneeberg, Saxony. The data of C. Frondel, quoted by Fleischer and Richmond (1943), are slightly different from those of Gruner.

Unit-cell contents. Vaux (1937) derived the number of oxygen atoms per unit cell of psilomelane (BM. 69160) as $20 \cdot 5 \pm 0 \cdot 7$, and the atomic proportions per 20 oxygen atoms as the most probable integral value; the value of H , computed from $\mathrm{H}_{2} \mathrm{O}+$, comes out at 4.73 per 20 oxygen atoms (for BM. 69160 and BM. 32687), much higher than corresponds to $\mathrm{H}_{4} \mathrm{O}_{20}$ in the formula unit. With the new cell-dimensions and density (below) we find 44 oxygen per unit cell, and the number of atoms per 22 oxygen atoms (table II) was calculated from the chemical analyses, quoted by Vaux, for the two specimens of psilomelane. The formula comes out as ( $\mathrm{Ba}, \mathrm{Mn}, R)_{3} \mathrm{Mn}_{8}^{4+} \mathrm{H}_{5} \mathrm{O}_{22}$ where $R$ represents the remaining cations. The ideal formula may be taken as $A_{3} X_{6} \mathrm{Mn}_{8}^{4+} \mathrm{O}_{16}$ where $A$ represents $\mathrm{Ba}^{2+}, \mathrm{Mn}^{2+}, R^{+, 2+, 3+, 4+}$ etc., and $X_{6}$ stands for $(0, O H)_{6}$ with OH about 5 . The manganese in different valency states is partly replaced by other cations and the excess $\mathrm{Mn}^{4+}$ may be partly distributed in the position for $\mathrm{Mn}^{2+}$. The positions of $\mathrm{Ba}^{2+}, \mathrm{Mn}^{2+}$, and other cations in $A$ are ambiguous, but $\mathrm{Mn}^{2+}$ is much nearer to $\mathrm{Ba}^{2+}$ than $\mathrm{Mn}^{4+}$ as regards ionic charge as well as ionic potential and ionic size. The exclusion of $\mathrm{SiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{WO}_{3}$, and alkalies by Vaux in his calculation of atomic proportions, while including $\mathrm{CaO}, \mathrm{MgO}, \mathrm{CuO}$, CoO , is probably not justified.

The density, determined on a number of small fragments of psilomelane (BM. 69160) by the Berman density balance using bromoform, is $4.70 \pm 0.02 \mathrm{~g} . \mathrm{cm}^{-3}$, similar to Vaux's value of $4.71 \mathrm{~g} . \mathrm{cm}^{-3}$. With the new values of the axial lengths ( $V=751 \cdot 3 \AA^{3}$ ), the molecular weight ( $M=1063$, calculated from the atomic weights of all the constituents in actual proportions), and density, the number of formula units per unit cell comes out as $2(Z=2 \cdot 001)$, and the calculated density is $4.70 \mathrm{~g} . \mathrm{cm}^{-3}$.

There are accordingly $6(\mathrm{Ba}, \mathrm{Mn}, R), 16 \mathrm{Mn}^{4+}, 10 \mathrm{H}, 440$, and in all 76 atoms in the unit cell of psilomelane.

The electron micrograph of psilomelane was taken in the usual way (Mukherjee, 1963) by Siemens Elmiskop I, using an accelerating potential of 60 KV and at low instrumental magnification ( $\times 5000$ ) in order to avoid undue rise of temperature and retain the original character of the mineral. The electron micrograph of the shining crystal (off BM. 69160) shows some almost square-faced crystals of $0.2 \mu-0.5 \mu$ dimensions
(arrow in fig. $2 a$ ) and particles of irregular edges of sizes in the range $0 \cdot 1-2 \mu$. The electron micrograph of the botryoidal material (off BM. 69160 as well as off BM. 32687) shows only the particles with irregular edges, of which the larger units are $1-2 \mu$ across (fig. 2b). The micrograph of a very small shining crystal shows some square-faced crystals,


Fig. 2. Electron micrographs of psilomelane: a. shining crystal of BM. 69160 ; $b$. dull botryoidal material of BM. 32687.
invariably associated with the irregular particles of the botryoidal material. This possibly suggests that the smallest shining crystal that could be selected for X-ray study will always be admixed with multiple crystals, and only one axis, around which the crystals are similarly oriented, could be set for Weissenberg photographs. The difficulty in isolating a good single crystal from the botryoidal material is a great hindrance for the determination of the structure of psilomelane.

## Wadsley's psilomelane

Wadsley (1953) obtained single-crystal data from the study of a tiny plate, separated from the outer crust of the botryoidal core of Vaux's psilomelane (BM. 69160). The structure amplitudes for reflexions ('streaks with lengths of $2-3 \mathrm{~mm}$.') in the Weissenberg photographs were determined by him, using the 'strongest reflexion (406)' as reference. The $\sin ^{2} \theta$ values, corresponding to the strong reflexions in his Weissenberg photographs, such as $(\overline{3} 02,302, \overline{1} 13,402, \overline{4} 06,406,513$, $\overline{6} 11)$, were found to be different from those of the strong powder lines of psilomelane and the intensity relations of many reflexions appeared quite different from those of the powder lines reported by Gruner and the author. Therefore powder data for Wadsley's crystal were computed for his monoclinic cell.

The $\sin ^{2} \theta$ and $d$ values were calculated from Wadsley's cell dimensions, and the powder intensities from his observed single crystal $F$ values, using the formula $I=(L p) \cdot(F)^{2} \cdot p . A$. The intensity of DebyeScherrer lines on a cylindrical film depends on $\left(1+\cos ^{2} 2 \theta\right) /\left(\sin ^{2} \theta \cos \theta\right)=$ $4 L p / \sin \theta$. The Lorenz-polarization factor for powder photographs ( $L p$ ) was obtained from the function, tabulated in International Tables for $X$-ray Crystallography, 1959, vol. II, no. 5.2.5B. The structure amplitudes ( $F$ ) were taken from Wadsley's observed $F$ values (listed in his table 2, p. 436, loc. cit.). The multiplicity factor ( $p$ ) was taken as 2 for $(0 k 0)$ and ( $h 0 l$ ) reflexions and 4 for ( $h k l$ ) reflexions. The absorption factor $(A)$ was omitted because it did not very much affect the conclusion in the present case. It could, however, be estimated as that for a sphere or cylinder of psilomelane of about 0.2 mm diameter, the absorption coefficient being available from Wadsley's cell dimensions and contents $2\left[\mathrm{Ba}_{0.64}\left(1 \cdot 36 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{Mn}_{5} \mathrm{O}_{10}\right]$ using atomic absorption factors from tables. The powder intensities from Wadsley's data along with his observed single-crystal $F$ values are included in table I for comparison. The intensities of the powder lines are expressed on the basis of 100 for the strongest reflexion ( $\overline{2} 13$ ).

Comparing the powder data of Wadsley's crystal with those of Gruner, Fleischer and Richmond, and the author, it is quite evident that Wadsley's single-crystal data produce a distinctly different powder pattern from that of psilomelane. The $d$ values of many strong powder lines of Wadsley's material, corresponding to the reflexions $\overline{3} 02,302$, $\overline{1} 13,402, \overline{4} 06,406,513, \overline{6} 11$, are very different from those of the powder lines of psilomelane, though the $d$ values of four strongest lines, 211,
$213,215, \overline{2} 17$, are similar to those of the powder lines of prilomelane. Some of the powder lines of psilomelane cannot be indexed at all with Wadsley's cell (indicated by (?) in table I), and the powder intensities from Wadsley's data are different for many lines. Moreover, the indexing of the powder lines of psilomelane indicates that reflexions with $k+l \neq 2 n$ are also present, which rules out the possibility of the space group $A 2 / m$ proposed by Wadsley.

## Unit cell contents of psilomelane

Fleischer (1960) showed that the four formulae of psilomelane, suggested by Vaux (1937), Fleischer and Richmond (1943), Palache, Berman, and Frondel (1944), and Wadsley (1953), are all fairly good approximations but that of Wadsley is best when they are based on a unit-cell (that of Wadsley) containing 20 oxygen atoms. But as we have seen above, Wadsley's material cannot have been true psilomelane.

Since the new unit cell contains 22 oxygen atoms, atomic ratios have been calculated on this basis for 5 chemical analyses quoted by Vaux and 9 analyses quoted by Fleischer (table II); the average value for the sum of cations is $11(\mathrm{Mn}+A=11 \cdot 00)$ and H is about $5(5 \cdot 07)$. The formula for psilomelane, $A_{3} X_{6} \mathrm{Mn}_{8}^{4+} \mathrm{O}_{16}$ where $A$ represents $\mathrm{Ba}^{2+}, \mathrm{Mn}^{2+}$, $\mathrm{Fe}^{3+}, \mathrm{Si}^{4+}$ etc., and $X_{6}$ stands for $(\mathrm{O}, \mathrm{OH})_{6}$ with OH about 5 , is very closely followed by most of the 14 analyses. The major deviations are for those analyses where the adsorbed water and constitutional water were not separately determined. Moreover, the uncertainty in the determination of constitutional water is an important factor; Fleischer (1960) observed from dehydration study of psilomelane that some of the water determined as $\mathrm{H}_{2} \mathrm{O}+$ may be considered as adsorbed. The calculated values of specific gravity are almost the same as the observed values for 5 samples (within 0.01 for 4 samples and 0.07 for 1 sample) and are higher than the observed values for 5 samples (within 0.14 ) but are lower than the values calculated by Fleischer. According to Vaux and Fleischer (loc. cit.) the possibility of pyrolusite and cryptomelane admixtures in psilomelane samples (bulk material analysed) may account for the discrepancies.

For the two original samples of Haidinger from Schneeberg and Romanèche (nos. 5 and 6 in table II) the procedure followed by Turner (1831) for the determination of 'oxygen and red-oxide' and the evaluation of $\mathrm{MnO}_{2}$ and MnO by Vaux and Fleischer (loc. cit.) from those data are not quite justified. The calculation of specific gravity from unit-cell contents and molecular weight, derived from such analytical data, is
liable to give inaccurate values. Moreover, no check on the purity of this material is possible (Fleischer suggested probable contamination by pyrolusite).

## Definition of psilomelane

The definition of psilomelane by Wadsley is different from that by Vaux. The powder data of Gruner, and of Fleischer and Richmond (loc. cit.) adequately describe the typical material from the type locality and this, with the chemical data, properly defines psilomelane; Vaux's analysed specimen BM. 69160 may properly be taken as the neotype specimen. The indexing of the powder lines of psilomelane is not possible on the basis of Wadsley's monoclinic cell or on Vaux's orthorhombic cell, but the indexing is ideal with author's orthorhombic cell. Moreover, the density, calculated from author's formula, unit-cell contents, and volume of the unit cell, agrees fairly well with the observed density.

Considering Wadsley's evidence on the nature of the crystal he examined, the only question is about the 'tiny plate' Wadsley separated from the outer crust of the botryoidal core; this may represent a material of the formula $A_{2} B_{5} \mathrm{O}_{10}$ for which there is good structural evidence. It is almost certainly an oxide for which both $A$ and $B$ have about the weight of Mn (the difference in weight may be evaluated from detailed examination of his intensity data). Although $B$ is mainly Mn there is very little evidence as to $A$, and the discussion of the structure about $\mathrm{Ba}_{0.64} \cdot\left(1 \cdot 36 \mathrm{H}_{2} \mathrm{O}\right)$ is speculative. It is quite evident that Wadsley's crystal was not psilomelane, but may be an altered phase of Vaux's neotype specimen.

Mukherjee's powder data for the material from Madhya Pradesh, India (1959) should be reconsidered in the light of the new cell, since the cell dimensions derived from powder data are of much lower reliability than those from single crystal data. This will be discussed as soon as the chemical analysis of the specimen is available.

## Dehydration of psilomelane

Fleischer and Richmond (1943) reported that the 'dehydration of psilomelane at $500-600^{\circ} \mathrm{C}$ gives hollandite as the chief product', and Fleischer (1960) observed that 'psilomelane is converted to hollandite at about $550^{\circ} \mathrm{C}$ '. An analogy of the structure of psilomelane heated to $600^{\circ} \mathrm{C}$ with that of hollandite (Byström and Byström, 1950) was drawn by Wadsley (1953).

The powder-spacing data of psilomelane (BM. 32687), heated at $400^{\circ} \mathrm{C}$ for 2 hours, were not significantly altered except slight shifting of reflexions towards higher angles. When heated at $600^{\circ} \mathrm{C}$ for 2 hours, the angles for all the reflexions were further increased, the intensity relations were significantly altered, and a new line at $3 \cdot 13 \AA$ was faintly recorded indicating marked structural changes in the orthorhombic cell. On heating at $700^{\circ} \mathrm{C}$ for 2 hours, the reflexion at $3 \cdot 13 \AA$ appeared as the most intense line with a broad diffuse halo at $3 \cdot 10 \AA$ which may be attributed to the disordered state and a period of marked structural changes initiating a phase transformation. The transformation to the monoclinic phase, very similar to hollandite, was confirmed at $800^{\circ} \mathrm{C}$ when the two reflexions at $3 \cdot 14 \AA$ and $3 \cdot 11 \AA$ (corresponding to $10 \overline{3}$ and 103 reflexions of hollandite) appeared as two sharply separated lines of strong intensity, and the powder-spacing data for most of the reflexions were almost identical to those of hollandite (Mukherjee, 1960) but the intensity relations were not exactly the same.

Acknowledgements. I am most grateful to Prof. H. Lipson of the University of Manchester (Royal Society Visiting Professor to the University of Calcutta, 1964) and Dr. R. J. Davis of the British Museum for valuable criticism and suggestions, and to Dr. M. H. Hey of the British Museum for the gift of fragments from the two specimens of Vaux's psilomelane. I wish to thank Dr. B. C. Roy, the DirectorGeneral, and Dr. M. V. N. Murthy, Chief Petrologist, fcr permission to publish the paper, Dr. N. N. Dasgupta and Dr. M. L. Dey of the Saha Institute of Nuclear Physics for providing facilities to take the electron micrograph.

## References

Byström (A.) and Byström (A. M.), 1950. Acta Cryst., vol. 3, p. 146 [M.A. 11 238].
Fleischer (M.), 1960. Amer. Min., vol. 45, p. 176.

- and Richmond (W. E.), 1943. Econ. Geol., vol. 38, p. 269 [M.A. 9 -4].

Gruner (J. W.), 1943. Amer. Min., vol. 28, p. 498.
Hatdinger (W.), 1831. Trans. Roy. Soc. Edinburgh, vol. 11, p. 129.
International Tables for X-ray Crystallography, 1959, vol. 2, p. 270 (Birmingham, Kynoch Press).
Lipson (H.), 1949. Acta Cryst., vol. 2, p. 43 [M.A. 11-96].
Mukherjee (B.), 1959. Min. Mag., vol. 32, p. 166.

- 1960. Acta Cryst., vol. 13, p. 164.
- 1963. Clay Min. Bull., vol. 5, p. 194.

Palache (C.), Berman (H.), and Frondel (C), 1944. Dana's System of Mineralogy, 7th edn, vol. 1, p. 668 (John Wiley \& Sons, New York).
Turner (E.), 1831. Trans. Roy. Soc. Edinburgh, vol. 11, p. 172.
Vadx (G.), 1937. Min. Mag., vol. 24, p. 521.
Wadsley (A. D.), 1953. Acta Cryst., vol, 6, p. 433 [M.A. 12-93 and 328].
[Manuscript received 12 January 1965]

