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TABLE I. 

lid 2 

I d obs. calc. hkl 

vs 5.654A 0-0313 0"0315 111 
vvw 5"210 0-0368 0.0368 200 
m 5.050 0.0392 0"0396 020 
vvs 4.495 0-0494 0-0492 002 
m 4.110 0.0592 0.0594 211 
m 3.821 0.0685 0.0684 112 

t0"0891 221 
vvw 3'353 0.0889 (0.0888 022 

vs 3"195 0-0980 0.0981 122 
s 3.074 0"1058 0"1059 311 
s 3"013 0-1102 0.1107 131 
vvw 2-769 0"1304 0'1300 113 
m 2.695 0-1377 0.1383 032 
s 2.601 0-1478 0.1472 400 
m 2.511 0.1586 0.1584 040 

Powder da ta  for scorodite 

l id ~ 

I d obs. calc'. 

w 2 '324A 0"1852 0"1854 
vvw 2"266 0"1948 0"1944 
vvw 2-245 0.1984 0.1984 
vvw 2-190 0.2085 0.2083 
vvw 2"145 0.2173 0-2176 
vvw 2.118 0.2229 0.2224 
vvw 2.050 0.2380 0'2380 
vvw 2'011 
vvw 1.954 
vvw 1.87I 
vvw 1'846 
vvw 1-833 
vvw 1.805 
vvw 1"760 

hkl 

331 
303 
004 
412 
114 
332 
233 

The high angle lines 
were not  indexed be- 
cause of the large 
number  of possible 
indices. 

The chemical, optical, and X-ray data show that the present mineral 
is the pure iron-arsenic end-member. This appears to be the first 
reported occurrence of scorodite in India. 
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The axial-ratio-inversion effect in Jahn-Teller distorted 
ML6 octahedra in the epidote and perovskite structures 

IN field-free space, transition metal (M) ions have five degenerate 
(equal energy) d-electron orbitals, which split under the influence of 
an octahedral crystal field into three low energy (4~) and two high 
energy (%) orbitals. The t~g orbitals are directed along the diad axes 
of the octahedron, i.e. between opposite pairs of ligand (L) ions, whilst 
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e o orbitals are directed along the tetrad axes, i.e. towards ligands, 
and the electrons in these orbitals are thus more strongly repelled. 

When the symmetry of the assemblage of filled d-electron orbitals 
in any M ion is lower than octahedral, the ML 6 group is distorted 
accordingly. This distortion (the Jahn-Teller effect) is strongest for 
ions with four (e.g. Cr 2+, Mu 3+) and nine (e.g. Cu 2+) d-electrons in the 
weak fields produced by 02- and F-, and for our present purposes it is 
negligible for all other M ions. The Jahn-Teller effect almost invariably 
makes itself felt as a tetragonal distortion of the octahedron with 
c/a > 1 (common) or c/a ~ 1 (rare). Other types of distortion have 
occasionally been recorded, but need not concern us here, as the pur- 
pose of this paper is to advance an explanation for the observation that 
Mn3+O~, Cr2+F6 and Cu~+F6 octahedra can be found in both the c/a ~ 1 
and the c]a < 1 configurations. 

Structural evidence. Recent work on epidote (Burns and Strens, 
unpub.) and viridine (Strens, unpub.) has shown that Mn a+ replaces 
aluminium in tetragonally distorted AIO e octahedra in the epidote 
(c/a 0.95) and viridine (c/a 1.12) structures, and that these c/a ratios 
are not greatly changed from their initial values (Ito et al., 1954; Burn- 
ham and Buerger, 1961) by this substitution. 

X-ray investigations of the K2CuF 4 (Knox, 1959) and KCuF 3 
(Edwards and Peacock, 1959) structures have shown the CuF~ octa- 
hedra to have c/a < l, by contrast with the CuF2 structure (Billy and 
Haendler, 1957) in which c/a > 1. Similarly, in KCrFa (Edwards and 
Peacock, 1959) c/a < l, whilst in CrF~ (Jack and Maitland, 1957) 
c/a ~ 1. Thus the Mn3+O6, CrY+F6, and Cu2+F6 octahedra in different 
structures can be found in both c/a ~ 1 and c/a > 1 configurations, 
suggesting that the determining factor is, at least in part, structural. 

Wave-mechanical calculations. Opik and Pryce (1957), Liehr and 
Ballhausen (1958), and Pryce et al. (1965) have made wave-mechanical 
calculations for isolated M L  6 systems, but none of these gives a definite 
answer concerning the relative stability of states with c/a ~ 1 and > 1, 
though there is general agreement that c/a will increase with covalency. 
In the treatment of Pryce et al., the sign of a second-order term fi deter- 
mines the stable configuration, and the following empirical relation is 

suggested for fl: fl = [const[[l_(]g~,_Kl[)/l~l] ' 

where I/~[ is a small number < 3, and (Km--K~) is the electronegativity 
difference of the M and L ions. 

Influence of covalency on c/a for an isolated M L  6 system. Ideally, an 
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isolated ionic ML 6 system with negligible Jahn-Teller distortion has 
regular octahedral (m3m = Oh) symmetry with c/a ~ 1. For d 4 ions 
(Mn 3+ and Cr 2+) with one unoccupied d orbital the covalent component 
of the bonding is assumed to be dsp 2. For this special case the eEect 
of covaleucy on c/a is easily understood, since with increasing covalency 
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FIGS. 1 and 2: FIG. 1 (left). Relationship between a:c ratio of MLs octahedra and  
covalency for some oxygen and halogen compounds o l d  4 and d 9 ions. A, metas table  
branch on which fall compounds exhibiting the  axial ratio inversion effect ; B, stable 
b ranchwi th  normal  a: c ratios. 1,CuBr2; 2,CuC12; 3,Cu2CI(OH)~ ; 4, Mn2Oa; 5, CuFf;  
6, viridine; 7, CrF~; 8, MnFa; 9, KCrF3; 10, piemonti te ;  11, KCuF3; 12, K2CuF 4. 
FIG. 2 (right). Potential  energy curve for the  M - L  z system. A Jahn-Teiler  energy 
te rm (a) is superimposed on the  normal  potential  energy nuclear separation curves 
for ionic (b) and covalent dsp 2 (c) cases to give curve (d). Two min ima are formed, 
one (A) at c/a < 1 is metastable,  the  other (B) at  c/a > I is stable. E A - E  z is larger 

for the  covalent (C) t han  for the  ionic (I) case. 

the bonds to the L~.~ ligands strengthen, whilst those to the L~ ligands 
weaken, so that  c/a increases from its minimum value of 1 to ~ for 
100 % covalent bonding (fig. 1). 

Influence of the Jahn-Teller effect. If  we now superimpose on the 
potential-energy-internuclear-separation curve for the M-L~ system 
a Jahn-Teller energy term, we obtain a curve with two minima (fig. 2), 
one (A) metastable, at c/a < 1, the other (B) stable at c/a > 1, separated 
by a maximum at c/a -~- I. In  an isolated ML s group the c/a > 1 con- 
figuration should always be stable, but the c/a < 1 configuration will 
be stable in a crystal if the energy required to distort the structure from 
the c/a < 1 to the c/a > 1 configuration exceeds EA--E ~. 
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This structurally controlled inversion is referred to as the axial-ratio- 
inversion effect. 

Application to kno.wn inverted structures. The between-chain AIO 6 
octahedron in epidote (Ito et al., 1954) has c/a 0.95 when it is occupied 
by (A1, Fe) ~+, neither of which ions gives rise to a Jahn-Teller effect 
or to square-planar bonding: this indicates that the site is compressed 
along its c axis, so that when Mn a+ enters the site the c/a ~ 1 configura- 
tion should be (and is) retained so long as EA--E B is not too large. 

The remaining compounds showing axial ratio inversion belong to 
the perovskite (KCuFa and KCrFa) and modified perovskite (K2CuF4) 
structures. In these compounds the c axes of the ML 6 groups are 
arranged parallel with the c axis of the crystal: this is to be expected, 
since disorder of the octahedral c axes would lead to severe local dis- 
tortion of the structure, which would be energetically unfavourable. 
With this point established we can look for the factors favouring 
a short c dimension for the crystal, and thus for the ML~ groups. We 
find that the face diagonal of the crystal (a~/2 referred to an idealized 
cubic cell with a = ~/a2e) is approximately 5"9 J~ for these com- 
pounds, compared with a radius sum 2(RF+RK) of 5-3 •. The K atom 
is thus 'loose' in its site, and contraction along c will give better packing 
than expansion. I f  the CrF~ groups in KCrF a are imagined to be 
replaced by groups having the Cr-F distances observed in CrF~, 
(c/a ~ 1), the expected volume change occurs: 

a c /a< 1 4.27A c /a~  1 3.99~- 
e 4.01 4.86 
V 73.1 A a 79.0 J~a 

The increase in volume is probably associated with an increase in 
entropy, and if a polymorphic relationship should be found to exist 
between the hypothetical compound KCrF 3 (c/a ~ 1) and KCrF a 
(e/a ~ 1), the latter should be the low-temperature high-pressure form. 
This relationship should hold for most, if not all, possible polymorphs 
of this type. Replacement of K or F by larger ions should stabilize the 
c/a > 1 structure. 

Conclusions. In isolated ML~ groups, where M is a d 4 or d 9 ion, the 
c/a > 1 configuration should always be stable, and c/a should increase 
with covalency. In ionic crystals the c/a ~ 1 configuration is stable if 
the energy required to distort the crystal as a whole to accept octa- 
hedra with c/a ~ 1 rather than < 1 exceeds EA--E B. The relative 
abundance of the two forms, and the confinement of the c/a ~ 1 
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distort ion to ionic solids are thus explained. The failure of wave- 
mechanical t rea tments  of isolated ML 6 systems to provide a satis- 
factory explanation of the c/a < 1 configuration in crystals is also 
understandable.  

The possibili ty of polymorphism clearly arises in many structures 
containing te t ragonal ly  distorted octahedra:  in general the structure 
with c/a < 1 has lower volume and entropy, and will be the low tem- 
perature high pressure form. 
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Authigenic ferriferous aragonite from bottom sediments of 
the Adriatic sea 

PETROOI~APHIC analysis of sandy fractions of bot tom sediments recently 
cored in the Gulf of Venice shows a high percentage of coarse carbonate 
constituents, consisting par t ly  of rounded, detr i tal  grains of limestone 
and dolomite (brought into the sea by  Venetian rivers) and par t ly  of 
irregular fragments, fiat crusts, and occasionally rounded concretions 
of non-skeletal, micro-crystalline carbonates. These la t ter  are usually 
yellowish to brownish in colour on account of the contaminat ing 
ferruginous mater ia l  (Damiani, Favre t to ,  Lenardon, and Morelli, 1964). 


