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Amphibole compositional space 

By R. PHILLIPS 
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[Read 23 September 1965] 

Summary. The basic formula of an amphibole is completely defined by stating the 
number of sodium atoms in X positions and the numbers of aluminium atoms in Y 
and Z. These three numbers are coordinates in a compositional space that can easily 
be represented. The alkali amphiboles are re-defined as having at least one atom of 
sodium in X in the basic formula unit. A systematic nomenclature for the calci- 
ferous and alkali amphiboles is suggested using existing end-member names. 

I T has been shown (Phillips and Layton,  1964) tha t  the major com- 
positional affinities of calciferous and alkali amphiboles are more 

easily appreciated by  deriving from the chemical analysis what  was 
termed the basic atomic formula. Regarding these amphiboles as the re- 
sult of various substitutions in the tremolite structure, the basic atomic 
formula is obtained by  converting all substitutions in the Z position to 
equivalent aluminium, all substitutions in Y to equivalent aluminium or 
magnesium, and substitutions in A and X to equivalent sodium. I t  was 
suggested tha t  the basic atomic formula could be related to pure end- 
member compositions on a simple two-axis diagram plott ing total  
sodium atoms against total  aluminium atoms in the formula. 

A disadvatxtage of this method is tha t  in certain eases two different 
basic formulae plot a t  the same point on the diagram. This occurs when 
the same numbers of sodium and aluminium atoms occupy different 
latt ice positions in the two formulae, as, for example, in the case of 
edenite-K, NaC%MgsSivA1 , and Trs0Gso, CaNaMg~A1Si s (cations only 
are given and the abbreviations are those suggested in the above paper). 
To discriminate between such compositions a method of representation 
is required tha t  will distinguish between Nax and Nax and between A1 ~" 
and A1 z. Now in the basic formula the relationship Naa § r = NaXq - 
A1 a must  hold. Knowing any three of these values, the fourth is com- 
pletely determined because of the need for balanced substitution. 

The variations of basic formula composition may therefore be re- 
garded as occurring in a three-dimensional amphibole-compositional 
space. Fig. 1 shows how this space may conveniently be represented rela- 
tive to orthogonal axes X, Y, and Z in a conventional orientation, 
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representing the numbers of atoms Na x, A1 Y, and A1 z in the basic for- 
mula. The figure may easily be duplicated to scale by tracing over an 
isometric graph paper. 

I s  

P a ~  Su 

Units-atoms per lattice position, 
Fro, l .  Amphibole compositional space within the  bounding cube. 

The compositional space is an oblique slice through a cube, bounded 
by faces equivalent to crystallographic {100} and {111} planes. The limits 
are set by the number of X positions in the lattice and by assumptions 
(Phillips, 1963) about the limits of substitution in Y and Z positions. 

I t  is immediately obvious fl'om fig. 1 that a given basic formula (and 
consequently the atomic formula of any amphibole) can be matched by 
more than one combination of the end-member compositions suggested 
by Phillips and Layton, 1964. However, this is a disadvantage that exists 
in any ternary or high-order system with solid solution where compounds 
of the primary components are regarded as end-members for deserip- 
tive purposes. In most normal cases the number of end-members is small 
and the most convenient choice of a combination of end-members is 
fairly obvious. The choice is usually also influenced by a knowledge of 
the range of solid solution and the frequency of occurrence of certain 
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compositions or ranges of composition. These points are demonstrated 
in fig. 2 with reference to the system FeO-F%Os-TiO 2 ; the difficulty is 
accentuated in the amphibole group because of the large number of end- 
members involved and because we have as yet only a limited knowledge 
of the true range of solid solutions and their association with particular 

Ti 02 

Fr O.Ti 0 ~ F r  TiO 2 

Fr FeO. Fg203 Fe203 

FIc~. 2. The system FeO-Fe203-TiO = illustrates how a given 
composition, e.g. A or B, can be expressed in terms of more than 
one combination of end-members when these are not the pri- 
mary components of the system. Because of the known range 
of composition of Fe-Ti oxide minerals in rocks, composition 
A would normMly be expressed in terms of the three end-mem- 
bers magnetite, henlatite, ilmenite, even though it could be 
expressed more simply as an ulvospinel-pseudobrookite solid 

so]ution. 

geological environments. I t  may be that  as our knowledge increases, and 
especially for a particular study, certain simple combinations of end- 
members will be found to be more useful than others, but  this has yet to 
be estab]ished. 

For some purposes it may be more convenient to fix the relative posi- 
tions of basic formulae by specifying for each the three coordinates X, Y, 
and Z rather than by having to determine the proportions of a larger 
number of end-members required to match each formula. 

I t  is useful at this point to consider the question of the boundary be- 
tween the calciferous and the alkali amphiboles. Phillips and Layton, 
1964, suggested that  no compositional break exists between these groups 
as previously defined, but  it is nevertheless convenient for certain pur- 
poses to make the distinction. In  this earlier paper an arbitrary division 
was set at a total of 1{ sodium atoms in the basic formula. I t  now seems 
tha t  u much more satisfactory division can be made on the basis of the 
sodium in X alone. Calciferous amphiboles are therefore redefined as 
having less than 1-00 atoms of sodium in X in the basic formula, whilst 
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alkali amphiboles have 1"00 or more. Fig. 3 shows the position of the 
dividing plane. The compositions TrsoGs0, T%oGa0, and 8%oR~o, which 
could not be distinguished from Ed, Pa, and G respectively on the two- 
axis diagram, are now seen to lie on this plane. 

Ts 

P o ~  Su 

J \ 

R ~  Ec 

Fla. a. The plane Na x - 1 as the boundary between the calciferous and alkali 
amphibole sub-spaces. 

The term s e n s u  e x t e n s o  was suggested by Phillips and Layton to de- 
note a composition containing at least 50 % of a named end-member. 
Thus Tr s.e. denotes a composition containing 50 • or more of the end- 
member tremolite-K. We may now consider the application of a s e n s u  

e x t e n s o  nomenclature to subdivisions of the compositional space just de- 
fined. 

The first major division has already been defined as the plane X = 1, 
separating the calciferous and alkali amphibole subspaces. The second 
logical division is by means of a plane midway between and parallel to 
the Tr, Ts, G triangle and the hexagon. Further boundaries required are 
provided by three diagonal planes of the cube parallel respectively to the 
X, Y, and Z axes. Fig. 4 shows the traces of the dividing planes on the 
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Tr, Ts, G triangle and the hexagon. I t  is difficult to represent clearly on 
a diagram the extension of these boundaries into the body of the cube, 
but  in fig. 5 sections have been drawn at  half atom intervals to indicate 
relationships in the solid. 

Su J \  Ts / /  

Ed~M 
. . . . .  

~11// / 
Tr G R Ec 

Fro. 4. The traces of the dividing planes on the Tr-Ts-G triangle and the hexagon. 

For  practical application of the nomenclature i t  is only necessary to 
refer to table I, which sets out the various limits together with simple 
conditions governing the position of a point relative to the oblique 
limiting planes. In  the case of the two end-members richterite and sun- 
diusite lying on the cale: alkali dividing plane, the name ranges across the 
division. I f  i t  should for any reason be necessary to make a distinction 
between compositions in diiterent parts of these two fields, the names 
may be prefixed calciferous or alkali as appropriate,  e.g. alk. R s.e., ealc. 

Su s.e., etc. 
As an example consider the basic formula shown by Phillips and Lay- 

ton (1964, p. 1108) to be equivalent to Gs6SussPa27Ts 4. I t  is no longer 
necessary to write out the basic formula at  length--we can say tha t  the 
basic formula is 1"05, 1-73, 1"28 if we adopt  the convention of quoting 
X, Y, and Z in tha t  order. Since X > 1, the formula is tha t  of an alkali 
amphibole. Reference to table I shows tha t  G, M, and Su are possible 
names. Conditions A and B are not satisfied, therefore the name (alkali) 
Sundiusite s.e. is appropriate.  

I f  we now wish to express the composition in terms of end-members, 
by writing out the basic formula in full and comparing with the end- 
member formulae i t  is easily seen tha t  the sodium in A restricts the 
amount  of Su in the composition to 60 ~ After deducting this and 
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bearing in mind  the  posi t ion a t  which the  analysis  plots,  a t r ial  and  error  

m a t c h  can very  quickly be made  and  leads to the  combina t ion  Su60G22. 5 

Trla.~Ts 4. For  m a n y  pract ica l  purposes  the  analysis  can be regarded  as 

lying in the  t r iangle S u - G - T r .  

Ta~L]~ I. Compositional limits for s.e. amphibole nomenclature 
X < 1.00. Calciferous amphiboles 

Conditions satisfied 

Z lJmque A+C A B C D Otherwise 

0-0.50 0-0.50 
> 0-50-1.00 
> 1"00-1-50 

> 0'50-1"00 0-1.50 
> 0.50-1.00 
> 1"00-1"50 
> 1'50-2.00 

> 1"00-1"50 0.50-1.00 
> 1.00-1.50 
> 1"50-2.00 

> 1"50-2'00 1.00-1.50 
> 1"50-2.00 

X = > 0.50 < 1.00 
0-0.50 0-0.50 

> 0'50-1.00 
> 0"50-1'00 0-0"50 

> 0"50-1'00 
> 1'00-1.50 

> 1'00-1"50 0-0.50 
> 0.50-1.00 
> 1.00-I.50 
> 1.50-2.00 

> 1.50-2.00 0.50-1.00 
> 1.00-2-00 

Ed 
Tr 

Pa 

Ts 

Tr R Ed 
Tr Ed 

Tr 
Tr Ts 

Tr 
Ts 
Ts 

Ts Pa 

Ed 
Pa 

Ws 
Pa 
Pa 

Su 

Tr g 
Ed 

Tr g 
Tr g Ed 

E'd P~ 

Tr 

Ts Pa 811 
Pa Su 

4s 
Ts Su 

The more general condition 0 % x--y+z ~< 1 must be satisfied in all eases if the 
basic formula is to lie within the compositional space as defined. 

In using the tables, always work from left to right in checking the conditions 
satisfied. 

Al though r a the r  different  f rom the  e n d - m e m b e r  combina t ion  

suggested by  Phil l ips and  Lay ton ,  b o t h  are equal ly valid,  b u t  the  p re sen t  

m e t h o d  leads to  a combina t ion  more appropr ia te  to  the  s.e. name.  I t  

still does no t  give a unique choice in all cases, for reasons given earlier, 

bu t  work on this  p rob lem is cont inuing and  fu r the r  c o m m e n t  m u s t  be 

left for the  future.  
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Many amphibole  analyses do no t  satisfy the  criteria for a reliable 

analysis suggested by Phillips, 1963. Der iva t ion  of the basic formula in 

such cases m a y  be difficult to make  in accordance wi th  the  rules so far  

given, bu t  this problem is to be discussed in a la ter  communicat ion.  Since 

any errors will tend  to be pushed down into the  A position, i t  is still 

possible for the  X, Y, and Z values to plot  within the  composi t ional  

space, so tha t  a name can be given. Also, if  the  plot  is outside the  space, 

TABLE I (cont.) 

X ~ l'00. Alkali amphiboles 
Conditions satisfied 

Z ~mque A B C D Other~'ise Y 
X = 1.00-1.50 

0-0.50 0-0.50 R 
> 0.50-1.00 0-0.50 

> 0.50-1.00 
> 1-00-1.50 0-0.50 

> 0.50-1-00 
> 1.00-1.50 

> 1.50-2.00 0 0.50 G 
> 0.50-1.00 
> 1'00-1.50 . G 
> 1.50-2.00 Su 

X = > 1.50-2.00 
0.50-1.00 0-0.50 Ec 
1.00-1.50 0-0.50 G 

> 0.50-1.00 Ec 
:> 1.50-2.00 0-0.50 G Ec 

0.50-1.00 G 
>- 1.00-1.50 M 

Conditions--Az ~ y x+�89 Cz ~ 2 - y  
B z ~ x  D y ~ 2 - x  

G Ec 

Ec  
Ec 
Ec 
M 
Su 

Su 

Ec 
M 
M 
M 

it  will normal ly  be possible to choose a suitable s.e. name from the adja-  

cent  named  space. The problem of extending the composit ional  space 

into more dimensions to take  account  of o ther  major  subst i tut ions also 

remains for future discussion. A t  least  for the m o m e n t  a re la t ively simple 

basic formula  nomencla ture  is provided tha t  can be used with un i formi ty  

by  all workers and has fewer disadvantages  than  the scheme previously 
suggested. 
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