# Synthesis and study of diaboleïte

### By R. E. WINCHELL<sup>1</sup> and H. E. WENDEN

### Department of Mineralogy, Ohio State University, Columbus, Ohio

[Taken as read 7 November 1968]

Summary. Diaboleïte has been synthesized between 25 and 100° C at atmospheric pressure and approximate water vapour partial pressures of 14·7 lb/in<sup>2</sup>. Under similar conditions at 170° C cumengéite appears to be the stable phase produced from a diaboleïte composition. Synthetic diaboleïte is much simpler morphologically than the natural mineral but the hemimorphic symmetry is more clearly demonstrated morphologically in the artificial specimens. A comparison of X-ray powder data for natural and synthetic diaboleïte shows almost exact detailed correspondence in line position and intensity between 0 and 180° 29. The cell dimensions obtained from X-ray powder data are a 5·869  $\pm$  0·002 Å and c 5·495  $\pm$  0·003 Å.

**D** IABOLEÏTE,  $Pb_2CuCl_2(OH)_4$ , originally described incompletely by Spencer and Mountain (1923), has been described in detail by Palache (1941) who has given crystallographic, optical, X-ray single crystal, and chemical data for the species. Byström and Wilhelmi (1950) have proposed a structure for the species and have given data from which a calculated powder pattern has been compiled (A.S.T.M. 5-0220). No complete powder pattern obtained from powder diffraction methods is to be found in the literature. No synthesis, and very little information on the stability of diaboleïte, have been reported in the literature.

Synthesis. Diaboleïte has been synthesized at two different temperatures from solutions of  $CuCl_2.2H_2O$  and  $Pb(OH)_2$  in stoichiometric proportions according to the formula given by Palache (1941). Slow diffusion, evaporation, and hydrothermal techniques were used in the synthesis experiments.

The slow diffusion technique employed was that described by Friedel (1892). In the present study, a solution of  $CuCl_2.2H_2O$  was allowed to diffuse through the wall of a cracked test tube into a hydrous bath of Pb(OH)<sub>2</sub> until reaction appeared complete. In the evaporation

<sup>&</sup>lt;sup>1</sup> Present address: Department of Geology, California State College at Long Beach, Long Beach, California.

## 934 R. E. WINCHELL AND H. E. WENDEN ON

experiment the components were mixed with excess distilled water and placed in a drying oven at  $100^{\circ}$  C until evaporation was complete. Sealed Pyrex tubes were used for hydrothermal synthesis at 100 and  $170^{\circ}$  C. A sealed pot bomb with a Teflon liner was used for the hydrothermal experiment above  $170^{\circ}$  C. Table I summarizes the experimental conditions and the results obtained from the synthesis experiments.

| TABLE I. | Summary | of synthesis | experiments | for diaboleïte. |
|----------|---------|--------------|-------------|-----------------|
|----------|---------|--------------|-------------|-----------------|

| Method         | Temp.                    | Time<br>(days) | Phases obtained                                   |
|----------------|--------------------------|----------------|---------------------------------------------------|
| Slow diffusion | $25^{\circ} \mathrm{C}$  | 339            | Diaboleïte                                        |
| Evaporation    | $100^{\circ} \mathrm{C}$ | <b>2</b>       | Diaboleïte, chloroxiphite (?), unidentified phase |
| -<br>D 4 h     | (100° C                  | 55             | Diaboleïte, unidentified phase                    |
| Fyrex tube     | {170° C                  | 16             | Cumengéite, cotunnite, unidentified phase         |
| Pot bomb       | $270^{\circ} \mathrm{C}$ | 9              | Murdochite, unidentified phase                    |

Although the evaporation method yielded only microcrystalline to cryptocrystalline powder, the slow diffusion experiment and the hydrothermal experiment at  $100^{\circ}$  C produced small diaboleïte single crystals, the largest of which were 0.07 mm parallel to the *c*-axis and 0.18 mm parallel to the *a*-axis.

The synthesis experiments indicate that diaboleïte is a low-temperature phase whose upper stability limit under hydrothermal conditions is between 100 and 170° C. Further, cumengéite appears to be the stable Pb–Cu phase formed immediately above the stability limit of diaboleïte under hydrothermal conditions approximating those used in this study. A study of the association and occurrence of diaboleïte at Mammoth mine, Tiger, Arizona, by one of the authors (H. E. W.) led him to the conclusion that diaboleïte and the associated species were formed at low temperatures consistent with those established during this study.

Morphology and optics. Synthetic diaboleïte is much simpler morphologically than the natural crystals described by Palache (1941). Although the dominant forms present on the synthetic crystals gave excellent reflections, the crystals were too small to allow accurate measurement on the large two circle goniometer available, but did show that the dominant forms developed on all the crystals are  $\bar{c}\{00\bar{1}\}$ ,  $a\{010\}$  and  $e\{011\}$ . In addition to the faces of the dominant forms, smaller faces belonging to other forms were observed and the synthetic crystals may be divided into two groups on the basis of the presence or absence of these subordinate forms (fig. 1): The first, to which most of the crystals

### DIABOLEÏTE

obtained belong, is characterized by a combination of the dominant forms in approximately equal development. The second is characterized by a combination of the equally developed dominant forms with the forms  $\bar{e}\{01\bar{1}\}$  and  $\bar{s}\{02\bar{1}\}$ . Development of  $\{01\bar{1}\}, \{010\}$ , and  $\{011\}$  on the synthetic crystals is such as to lengthen the crystal in the direction of the *c*-axis and results in a decidedly more hemimorphic appearance than is exhibited by natural crystals and lend added weight to the morphological evidence in support of the hemimorphism of diaboleïte already given by Palache *et al.* (1941).



FIG. 1. Morphology of synthetic diaboleïte.

Synthetic diaboleïte is a transparent pale blue and yields a uniaxial negative interference figure under conoscopic conditions; no evidence of the distortion of the interference figure reported by Palache (1941) was observed in the synthetic material examined.

X-ray investigation. Three specimens of natural material and several specimens of synthetic diaboleïte were subjected to X-ray powder diffraction examination. All the natural specimens were from Mammoth mine, Tiger, Arizona, and were obtained from the Harvard Collection (H.N. 104521), the Royal Ontario Museum (R.O.M. M24959), and the United States National Museum (U.S.N.M. 114577). Both the d-spacings and the line intensities of the natural and synthetic specimens are identical within the limit of error of the measurements. X-ray powder data for one of the natural and one of the synthetic specimens studies are tabulated and compared with the calculated data taken from the work of Byström and Wilhelmi (1950) (A.S.T.M. 5-0220) in table II. These data as well as the powder photographs from which they were obtained (fig. 2) show a remarkably close agreement in line position and intensity over nearly the whole interval from 0 to  $180^{\circ} 2\theta$ . In addition the weak lines obtained during this study further establish the lack of systematic omissions and confirm the space group P4mm

| (4)         | 4               | ľ.M.     |           |
|-------------|-----------------|----------|-----------|
| and         | 5.49            | L.S.J    |           |
| 77),        | с<br>С          | ₹ pt     |           |
| 145         | 00.0            | 60 au    |           |
| M.          | 0±0             | 195      |           |
| S.N.        | 5.87            | lmi,     |           |
| Ū.          | в<br>В          | /ilhe    |           |
| cona        | usin            | μ        |           |
| Aria        | ings            | n ar     | uc.       |
| ger,        | pac             | strör    | liati     |
| °, Ti       | sed :           | (Bys     | t rad     |
| min         | cula            | ata      | $1-K_{0}$ |
| oth         | , cal           | al d     | ي.<br>م   |
| uuu         | xed.            | ryst     | mera      |
| Ω Mε        | inde            | gle c    | r ca      |
| fron        | E               | ) sing   | mete      |
| leïte       | /ith:           | છ<br>વ   | diaı      |
| abo         | ed v            | ) an     | cm        |
| al di       | npar            | 1950     | 1-46      |
| atur        | con             | ni, J    | · ()      |
| 3) n        | uoisi           | lhelı    | -022      |
| or: (       | diffu           | [ M      | ιĊ        |
| ata 1       | low             | and      |           |
| er d        | om s            | röm      |           |
| pwo         | te fr           | Byst     |           |
| ay p        | oleït           | .) m     |           |
| I-X         | diat            | P4m      |           |
| E II.       | letic           | Å.,      |           |
| ABL         | $\mathbf{ynth}$ | 003      |           |
| <b>C</b> -1 | 92              | <u> </u> |           |

|   | Cu- $K\alpha$ radiation. |   |
|---|--------------------------|---|
| • | camera,                  |   |
| ) | diameter                 | _ |
|   | cm                       |   |
| • | 11.46                    |   |
|   | 0220).                   |   |

| TTO'R NIM      | 4   | I $d$                                                  | <1 1.590 | <br>} | 7 1.550       | 9 1.534  | i     | 6 1.466  |       | 5 1.414  | <1 1.399 | 000 1 1 | ADD.T T | 0261 2   | Ne.T I   |       | 5 1.338                 |         | 5 1.312  | 7 1.302        | 1 1.291     | 5 1.275        | <1 1.263 | 5 1·242  | 5 1.234  | 1 1.015           | 017.T T |
|----------------|-----|--------------------------------------------------------|----------|-------|---------------|----------|-------|----------|-------|----------|----------|---------|---------|----------|----------|-------|-------------------------|---------|----------|----------------|-------------|----------------|----------|----------|----------|-------------------|---------|
| 1000 Tool      | e   | $I \xrightarrow{d}$                                    | <1 1.590 | <br>  | 7 1.554       | 9 1.537  |       | 6 1.466  | <br>  | 5 1.417  | <1 1.398 | 006.1 1 | 700.1 1 | 0101     | 710 T 1  |       | 5 1.341                 |         | 5 1.312  | 7 1.303        | $1 \ 1.293$ | 5 1.274        | <1 1.265 | 5 1.244  | 5 1.235  | 710.1 1           | 117.1 T |
| diation.       | 2   | $\left\{ \begin{array}{c} p \\ I \end{array} \right\}$ |          |       | 80 1.554      | 80 1.537 |       | 60 1.467 |       | 60 1.417 | <br>     |         |         | 646.1 VO | PIP T NO |       | 60 1.341                |         | 60 1.315 | 80 1.303       |             | 60 1.276       | ]        | 60 1.245 | 60 1.235 |                   |         |
| Cu-Ka ra       | 1   | $d_{\mathrm{calc.}}$                                   | 1.594    | 1.561 | 1.554         | 1.538    | 1.502 | 1.468    | 1.424 | 1.416    | 1.401    | 1.383)  | 1.378   | I-374 (  | 1.373    | 1.342 | 1.337                   | 1·337 ) | 1.313    | 1.304<br>1.304 | 1.294       | 1.277          | 1.264    | 1.244    | 1.236    | 1.217)            | 1-217)  |
| camera,        |     | hkl                                                    | 302      | 321   | 203           | 312      | 213   | 400      | 410   | 401      | 322      | 330     | 411     | 004      | 223      | 331   | 104                     | 303     | 420      | 114<br>313     | 402         | 421            | 412      | 204      | 332      | 214               | 323     |
| diameter       | 4   | q                                                      | 5.770    | 5.496 | 4.084         | 3.967    | 3.282 | 2.910    | 2·724 | 2.609    | 2.572    | 2.466   | 2.351   | 2.279    | 2.063    | 1.996 | 1.969                   | 1.931   | 1.892    | 1.850          | 1.823       | 01710          | 671 T    | 1·671    | 1.652    | 1.623             |         |
| 16 cm          |     | ( 1                                                    | ŝ        | 10    | 7             | ന        | 6     | 80       | Ð     | Ĭ        | 6        | က       | L       | 10       | œ        | 5     | Ĩ                       | 5       | ભ        | 4              | 9           | 0              | o        | 9        | 4        | $\ddot{v}$        |         |
| 20). 11-       | ŝ   | d b                                                    | 5.799    | 5.507 | $4 \cdot 143$ | 3.991    | 3.305 | 2.929    | 2.737 | 2.615    | 2.580    | 2.477   | 2.358   | 2.283    | 2.070    | 2.001 | 1.970                   | 1.936   | 1.893    | 1.853          | 1.829       | 14<br>14<br>17 | nni T    | 1.674    | 1.653    | 1.627             |         |
| 5-02           |     | (1                                                     | ero      | 10    | 5             | en       | 6     | œ        | õ     | ٦        | 6        | က       | \$7     | 10       | œ        | r-    | $\overline{\mathbb{V}}$ | 2       | ¢1       | 4              | 9           | Ċ              | 0        | 9        | ᢐ        | $\overline{\vee}$ |         |
|                | 67  | d p                                                    | I        | 5.507 | 4.156         | 4.008    | 3.314 | 2.930    | 2.740 | I        | 2.587    | 2.487   | 1       | 2.292    | 2.074    | 2.008 |                         |         | 1.897    | 1.854          | 1.831       | 1.740          | ont T    | 1.675    | 1.662    |                   |         |
| omek           |     |                                                        | I        | 100   | 09            | 40       | 100   | 80       | 40    | I        | 80       | 40      | 1       | 100      | 80       | 09    |                         | I       | 40       | 60             | 09          | 100            | 7007     | 60       | 40       | ]                 |         |
| <b>T</b> ) and | - / | alc.                                                   | 870      | 494   | 151           | 011      | 312   | -935     | 747   | -625     | -589     | 488     | 369     | 291      | 075      | 900   | 957                     | -942    | -898     | -856)<br>-843  | 831         | (667)          | -748)    | 675      | ·656     | -628              |         |
| i i            |     | $d_{c}$                                                | ý        | ò     | 4             | 4        | က်    | 2        | Ś     | ŝ        | 61       | ¢1      | Ċ1      | Ġ        | ά        | ંગ    | ÷                       | ÷       | ÷.       |                | -           | ٦              | -        | ÷.       | -        | Γ                 |         |

936

R. E. WINCHELL AND H. E. WENDEN ON

| 4    | $I \xrightarrow{d}$  |          |         | 1 1 006<br>2 1 003 | 4 0-9899 | 1      |                         | 1 0-9776 | 0.000    | 2 0.9/41 | 012000   | 01/6.0 2 | ]      | 2 0.9623 | ]      |          | 3 0.9483 |          | 4 0.9448     | 1        | ]       | 2 0.9213    | 1       |         | 4 0.9157     |
|------|----------------------|----------|---------|--------------------|----------|--------|-------------------------|----------|----------|----------|----------|----------|--------|----------|--------|----------|----------|----------|--------------|----------|---------|-------------|---------|---------|--------------|
| ಣ    | $I \xrightarrow{d}$  |          | .       | 1 1-006<br>2 1-003 | 4 0.9899 | 1      |                         | 1 0.9779 | 1110000  | Z U-9/4/ | 1120 0 0 | TT/6.0 7 |        | 2 0.9268 | <br>[  | ]        | 3 0.9487 |          | $4 \ 0.9451$ | <br>     |         | 2 0.9214    | 1       | ]       | $4 \ 0.9150$ |
| ભ    | $I \xrightarrow{d}$  | 1        |         |                    |          |        |                         |          |          |          |          |          |        |          |        |          |          |          |              |          |         |             |         |         |              |
| I    | $d_{\mathrm{calc.}}$ | 1·013 )  | 1.013 / | 1:003              | 0.9903   | 0.9885 | 0.9884                  | 0.9784   | 0.9748)  | 0.9746   | 0-9711   | 0.9708   | 0.9651 | 0.9632   | 0.9581 | 0.9505   | 0.9489   | 0.9456   | 0.9453       | 0.9367   | 0.9281  | 0.9216      | 0.9158  | 0.9157  | 0.9152       |
|      | hkl                  | 215      | 522     | 0.80<br>404        | 531      | 414    | $503 \\ 433 \\ 433 \\ $ | 009      | 334      | 513      | 225      | 442      | 610    | 001      | 305    | 611      | 424      | 315      | 532          | 523      | 620     | 602         | 540     | 900     | 621          |
| 4    | $I \xrightarrow{d}$  | 5 1.183  |         | 2 1.150            | 1.147    |        | <b>3</b> 1·144          |          | 4 1·126  |          | 4 1.103  | POT T E  | !      |          |        | <1 1.077 |          | 5 1.065  |              | 1.061    | TOD.T D | 1 1.049     | 3 1.037 | 3 1.028 | 3 1.019      |
| en - | $I \xrightarrow{d}$  | 5 1.184  | ]       | 2 1.150            | 6 1.147  | 1117   | 3 1.145                 |          | 4 1·126  |          | 4 1.103  | POT T E  |        |          |        | <1 1.079 |          | 5 1.067  |              | 6 1.069  |         | $1 \ 1.051$ | 3 1.037 | 3 1.029 | 3 1.019      |
| 61   | $I \xrightarrow{d}$  | 60 1.182 |         | 10 1.151           |          |        | 60 1.145                |          | 60 1.126 |          | 60 1-103 | POT T DO |        | <br>     |        |          |          | 60 1-066 |              | 190-1-02 |         |             |         | 1       | <br>         |
| I    | $d_{\rm calc.}$      | 1.184    | 1.174   | 1.151              | 1.148    | OLT T  | 1.145<br>1.145          | 1.127    | 1.124    | 1.124    | 1.104    | 1.104    | 1.099  | 1.090    | 1.080  | 020.1    | I PINT   | 1.069    | 1-067 /      | 1.062    | 1.062   | 1.050       | 1.038   | 1.029   | 1.020        |
|      | Ŀkl                  | 22       | 00      |                    | 01 (     | 31 /   | 24<br>03                | 11       | 04       | 13       | 14       | 33       | 65     | 20       | 05     | 02)      | 32 )     | 21       | 23           | 15       | 12      | 24          | 40      | 05      | 41           |

TABLE II (cont.)

|           | 4  | $I \xrightarrow{d}$                                    |        |        | 0.0970 | 0170.0 0 | 1<br>        | $9 \ 0.8207$ |             |            | 2 0.8138 | 2 0.8117 |          | 5 0.8049 |        |          |        | !      |        | 1 0.7966 |          | 0.1340       |         | 1 0.7897 | 1001 0 T | 2 0.7848     | 4 0.7801 | 1      | 3 0.7766                                                   |
|-----------|----|--------------------------------------------------------|--------|--------|--------|----------|--------------|--------------|-------------|------------|----------|----------|----------|----------|--------|----------|--------|--------|--------|----------|----------|--------------|---------|----------|----------|--------------|----------|--------|------------------------------------------------------------|
|           | ಣ  | $\begin{bmatrix} I \\ d \end{bmatrix}$                 |        | -      | 0.0977 | 1170.0 0 |              | 8 0.8208     | )<br>)<br>) |            | 2 0.8137 | 2 0.8116 | 1        | 5 0.8050 |        |          |        |        | ]      | 1 0.7968 | 01010 01 | 10 0-1940    |         | 1 0.7803 | non n T  | $2 \ 0.7849$ | 4 0.7804 |        | 3 0-7768                                                   |
|           | 63 | $\left\{ \begin{array}{c} 1 \\ q \end{array} \right\}$ |        |        |        |          |              |              |             |            |          |          |          |          |        |          |        |        |        |          |          |              |         |          |          |              |          |        |                                                            |
|           | I  | $d_{calc.}$                                            | 0.8293 | 0.8290 | 0.8280 | 0.8279   | 0.8212       | 0.8209       | 00100       | 0.5195     | 0.8141   | 0.8120   | 0.8064   | 0.8052   | 0.0099 | 0700.0   | 0.8021 | 0.7981 | 0.7978 | 0.7969   | 0.7949   | 0.7047       | 112010  | 0.7896   | 0.7896   | 0.7849       | 0.7805   | 0.7780 | 0-7769                                                     |
| I (cont.) |    | hkl                                                    | 306    | 101    | 444    | 623      | 316          | 711)         | 551)        | 043<br>210 | 640      | 534      | 720      | 641      | 505    | 435      | 702    | 326    | 721    | 604      | 515      | 712)         | 552     | 614      | 633      | 001          | 642      | 107    | 406                                                        |
| TABLE I   | 4  | $\int_{a}^{b} d$                                       |        |        |        |          | $3 \ 0.9025$ | 3 0.8936     |             |            | 6 0.8818 | 0.000    | 6 0.0704 | 0 U-8/94 |        | 3 0.8741 | [      | <br>   | 1      | 1        | 2 0.8625 | $3 \ 0.8602$ |         | 1        | 4 0.8425 |              | 3 0.8376 |        | 3 0.8298                                                   |
|           | က  | $\left\{ \begin{array}{c} p \\ I \end{array} \right\}$ |        |        | 1      | ]        | 3 0.9025     | 3 0.8941     | 1           |            | 6 0.8818 | 0100 0 0 | 6 0 0H01 | 0 U-8/94 | <br>   | 3 0.8741 | 1<br>1 |        | 1      | !<br>    | 2 0.8628 | 3 0.8604     |         |          | 4 0.8425 |              | 3 0·8378 |        | 3 0.8299                                                   |
|           | ৎগ | $\left\{ \begin{array}{c} I \\ q \end{array} \right\}$ |        |        |        |          |              |              |             |            |          |          |          |          |        |          |        |        |        |          |          |              |         |          |          |              |          |        |                                                            |
|           | I  | $d_{\mathrm{calc.}}$                                   | 0.9108 | 0.9105 | 0.9047 | 0.9043   | 0.9028       | 0.8942       | 0.8924      |            | 0-8823   | 0.8822   | 0.8796   | 0.8793   | 0.8751 | 0.8741   | 0.8699 | 0.8696 | 0.8646 | 0.8642   | 0.8630   | 0.8605       | 0.8538) | 0.8538   | 0.8426   | 0.8386       | 0.8377   | 0.8338 | 0.8302                                                     |
|           |    | hkl                                                    | 325    | 612    | 106    | 541      | 443          | 116          | 504         | 434)       | 514      | 533      | 405      | 622      | 630    | 206      | 415    | 542    | 216    | 631      | 603      | 335          | 524     | 613      | 425      | 200          | 226      | 632    | $\left\{ \begin{array}{c} 710 \\ 550 \end{array} \right\}$ |

938

#### DIABOLEÏTE

given for diaboleïte by Palache *et al.* (1941) and Byström and Wilhelmi (1950).

The Cu- $K\alpha$  doublets for six relatively sharp reflections known from the indexing to be single lines and having  $2\theta$  values greater than  $146^{\circ} 2\theta$ 



FIG. 2. X-ray powder diffraction photographs for natural diaboleïte (U.S.N.M. 114577) (above) and synthetic diaboleïte (below) prepared the slow diffusion method.

were used to obtain precise values for a and c. The results,  $a 5.869 \pm 0.002$  Å,  $c 5.495 \pm 0.003$  Å, are in reasonable agreement with Palache et al. (1941;  $a 5.83 \pm 0.02$  Å,  $c 5.46 \pm 0.02$  Å), and in excellent agreement with Byström and Wilhelmi (1950;  $a 5.870 \pm 0.003$  Å,  $c 5.494 \pm 0.003$  Å).

Acknowledgements. The authors wish to express their gratitude to Professor C. S. Hurlbut of Harvard University, Dr. J. A. Mandarino of the Royal Ontario Museum and Dr. Paul E. Desautels of the United States National Museum for providing the specimens of natural diaboleïte used in this study.

References

BYSTRÖM (A.) and WILHELMI (K.), 1950. Arkiv Kemi., vol. 2, pp. 397-404 [M.A. 11-237].

FRIEDEL (C.), 1892. Bull. Soc. franç. Min., vol. 15, pp. 96–101.
PALACHE (C.), 1941. Amer. Min., vol. 26, pp. 605–612 [M.A. 8–215].

SPENCER (L.) and MOUNTAIN (E.), 1923. Min. Mag., vol. 20, pp. 67-92.

[Manuscript received 19 February 1968]