Further detail on the crystal structure of zussmanite

A. LOPES-VIEIRA ${ }^{1}$ AND J. ZUSSMAN ${ }^{2}$
Department of Geology and Mineralogy, Parks Road, Oxford

SUMMARY. Mineral data and a brief outline of the structure for zussmanite (ideal formula

$$
\left.\mathrm{KFe}_{13} \mathrm{Si}_{17} \mathrm{AlO}_{42}(\mathrm{OH})_{14}\right)
$$

have been published previously. This paper describes the determination of the crystal structure and presents and discusses the results. The structure consists of rhombohedrally stacked layers of $\mathrm{Fe}-(\mathrm{O}, \mathrm{OH})$ octahedra to each side of which are attached rings of six (Si, Al) -O tetrahedra. These composite layers are linked to one another by rings of three (Si, AI)-O tetrahedra, and by potassium atoms, the latter in positions analogous to those in a mica. There is some evidence of disorder of the layer stacking. Interatomic distances and angles, and valency balance, are discussed.

THE mineral zussmanite was discovered in 1960 by S. O. Agrell, along with two other new minerals, deerite and howieite, occurring in metamorphosed shales, siliceous ironstones and impure limestones of the Franciscan formation, Laytonville district, Mendocino County, California. A brief account by Agrell, Bown, and McKie (1965) described zussmanite as occurring in pale green tabular crystals with perfect cleavage, and gave the following further details: uniaxial with ω I-645, e I.623; weakly pleochroic with ω pale green and ϵ colourless; specific gravity $3 \cdot 146$; rhombohedral $R 3$ or R_{3} with $a_{\text {hex }}$ II. $66 \AA, c_{\text {hex }} 28.69 \AA$; formula from chemical analysis and on the basis of 56 oxygen atoms:

$$
\left(\mathrm{Na}_{0.07} \mathrm{~K}_{0 \cdot 92}\right)\left(\mathrm{Mg}_{1 \cdot 33} \mathrm{Mn}_{0 \cdot 46} \mathrm{Fe}^{2+}{ }_{10 \cdot 85} \mathrm{Fe}^{3+}{ }_{0 \cdot 11} \mathrm{Al}_{0.34} \mathrm{Ti}_{0 \cdot 01}\right)\left(\mathrm{Si}_{16 \cdot 6} \mathrm{Al}_{1 \cdot 4}\right) \mathrm{O}_{42 \cdot 2}\left(\mathrm{OH}_{13 \cdot 8}\right)
$$

The above formula approximates very closely to

$$
(\mathrm{K} \mathrm{etc} .)_{1 \cdot 0}\left(\mathrm{Fe}^{2} \mathrm{etc} .\right)_{13 \cdot 0}\left(\mathrm{Si}, \mathrm{Al}_{18} \mathrm{O}_{42}(\mathrm{OH})_{14} .\right.
$$

The structure of zussmanite has been determined, but has so far been described only in a short note (Lopes-Vieira and Zussman, 1967).

Experimental. The crystal used for the structure determination was a small rectangular plate measuring $0.16 \times 0.14 \times 0.06 \mathrm{~mm}$. The crystal was mounted on a Weissenberg camera to rotate about an $a_{\text {hex. }}$ axis, and zero, first, second, and third layer reflections were recorded in equi-inclination settings. Zirconium-filtered molybdenum radiation was used, and reflections were recorded out to $\sin \theta=0.95$ for each layer. Intensities were measured visually by comparison with an intensity scale.

[^0]Three unusual features of the X-ray photographs were noted: the presence of certain Weissenberg festoons of spots that were much stronger than average; the fact that many of the reflections were streaked parallel to c^{*}; and the large proportion of possible reflections that were too weak to be observed (i156 observed and measured; 765 zero). Data reduction procedures were employed (absorption neglected) and $|F|$ values were placed approximately on an absolute scale by the Wilson method.

Figs. I and 2: Fig. I (left). Relationship in reciprocal space between true cell and sub-cell reflections. Zero and upper layer reciprocal lattice points are shown projected on to the hkio plane. True cell axes are x^{*} and y^{*}; sub-cell axes are $x^{\prime *}$ and $y^{\prime *}$; the direct space true cell axes X and Y also marked. Fig. 2 (right). Relationship in direct space between the true cell $a_{1} \times a_{2}$ and the sub-cell $a_{1}^{\prime} \times a_{2}^{\prime}$ ('hexagonal' axes).

Structure determination and results. The structure of zussmanite was determined by the method of trial and error, since there were several good clues as to its nature. Physical properties and chemical composition both indicated a probable relationship to a mica; the shape and size of unit cell, and the presence of a set of very strong reflections corresponding to a much smaller pseudo-cell, both indicated further features of the structure.

The particularly strong reflections were of the kind $h . k . \overline{h+k} . l$ where $k=3 h \pm \mathrm{r} 3 n$ (where $n=$ integer). These reflections are shown in fig. I , which is a plot of the reciprocal lattice projected on to (ooor). All reciprocal lattice points for the unit cell are shown, and the special reflections are seen to define a rhombohedral 'superlattice' in reciprocal space. The corresponding direct space relationships are shown in fig. 2, and numerical data are given in table I. If the iron atoms in zussmanite are assumed to lie in planes of $\mathrm{Fe}-(\mathrm{O}, \mathrm{OH})$ octahedra similar to the Fe, Mg octahedra in biotite, then the dimensions and relative orientations of true cell and pseudo-cell can be derived as in fig. 3. This model of part of the structure had the further encouraging feature
that the unit (hex.) cell contained 13 Fe octahedra per layer of the structure, as required by the chemical formula.

It was therefore postulated that the entire structure consisted of rhombohedrally stacked layers of $\mathrm{Fe}-\mathrm{O}$ octahedra, and that to either side of these there were attached $(\mathrm{Si}, \mathrm{Al})-\mathrm{O}$ tetrahedra in such a way as to produce the unit cell repeat as shown in fig. 4. The presence of rings of six tetrahedra seemed likely because of the rhombohedral symmetry of the crystal lattice, and it was further assumed that the sixmembered rings pointing opposite ways and attached to successive layers of octahedra

Table I. Dimensions of true cell and sub-cell of zussmanite
True cell: $a_{h}=11.66 \AA, c_{h}=28.69 \AA$; rhombohedral true cell: $a_{r}=11.69 \AA, \alpha_{r}=59.8^{\circ}$.
Sub-cell: $a_{h}^{\prime}=3 \cdot 24 \AA=a_{h} / \mathcal{V}_{1} 3, c_{h}^{\prime}=28.69 \AA=c_{h}$; rhombohedral sub-cell : $a_{r}^{\prime}=9.75 \AA, \alpha_{r}^{\prime}=19 \cdot 1^{\circ}$.

Figs. 3 and 4: Fig. 3 (left). Orientation of the Fe-O octahedral layer in relationship to the true cell and sub-cell x and y axes. Fig. 4 (right). Arrangement of rings of six tetrahedra in the unit cell. The figure shows the tetrahedra at only one z-level projected on to the (OOOI) plane.
came directly over one another and were not staggered, ${ }^{1}$ and that potassium atoms lay symmetrically placed between the rings; both of these arrangements are similar to those found for the micas. The structure at this stage had accounted for all atoms except six silicon and six oxygen atoms.

The feasibility of this trial structure was tested further by means of a one dimensional Fourier synthesis, using only oool reflections to give a projection of the electron density on to the c axis. The structure was represented quite well by this except that additional electron density seemed to be required with the same z coordinates as the potassium atoms. The surplus silicon and oxygen atoms were then placed to form three-membered rings of tetrahedra as shown in fig. 5, and the resulting structure

[^1](fig. 6) gave good agreement between observed and calculated F values ($R=0 \cdot 16$). It was further noted that the number of octahedral corners not linked to tetrahedra was exactly that required to match the $14(\mathrm{OH})$ ions per layer given by the chemical formula. Alternative, structurally less plausible, arrangements gave less good agreement.

The intensity statistics for zussmanite were plotted after the manner of Howells et al. (1950) with the result shown in fig. 7. The $N(z)$ curve is seen to lie well above that for a centrosymmetric structure, indicating, as would be expected for the structure

Figs. 5 and 6: Fig. 5 (left). Arrangement of silicon and oxygen atoms (solid circles) forming rings of three tetrahedra which link the six-membered rings. (Projection on (oool).) Fig. 6 (right). Perspective view of the structure of zussmanite, showing one layer of $\mathrm{Fe}-\mathrm{O}$ octahedra with the six-membered rings of downward-pointing tetrahedra linked to the upper side of it. Above these are six-membered rings of tetrahedra pointing upwards towards the next octahedral layer (not shown). Three-membered rings of tetrahedra and their linkage, and potassium atoms, are also shown. In the full structure, successive layers of octahedra are offset in the $x y$ plane in accordance with rhombohedral stacking.
postulated, the presence of 'hypersymmetry' (Rogers and Wilson, 1953). The inference of centrosymmetry could not be taken as necessarily applying to the structure as a whole, since it could refer only to those parts of the structure that define the small pseudo-cell. A test for piezoelectricity was carried out by the method of Giebe and Scheibe, and the result was negative. There was thus no direct conclusive evidence that the space group of zussmanite is $R \overline{3}$ and not R_{3}; the structure described is, however, centrosymmetric.

Refinement of the structure was carried out by the method of least squares, using form factors for the dominant ion in the various structure groups, i.e. $\mathrm{K}, \mathrm{Fe}, \mathrm{Si}$, and O . The R value obtained was 16% using all possible reflections ${ }^{1}$ and 12.5% if the unusually large number of unobserved reflections were omitted. Atomic coordinates and isotropic temperature factors are listed in table II.

Interatomic distances and bond angles are listed in tables III and IV, in which atoms are labelled in accordance with figs. 8, 9, 10, and II.
${ }^{1}$ A complete list of F values is contained in the Ph.D. thesis by A. Lopes-Vieira, University of Oxford. A copy of the list may be obtained from J. Zussman.

Table II. Atomic coordinates referred to 'hexagonal cell', and isotropic temperature parameters. Standard deviations ($\times \mathrm{IO}^{4}$) are given in brackets

Key nos. (figs. $8-\mathrm{II})$					x / a

Discussion

The mineral zussmanite should clearly be classed as a layered silicate since its structural units are ideally of infinite lateral extent but of discrete thickness. Its structure has close affinities to that of the trioctahedral micas in having a layer of $\mathrm{Fe}-\mathrm{O}$ octahedra sandwiched between inward pointing tetrahedra. The latter, however, instead of forming continuous sheets of six-membered rings, arc grouped in separate rings of six and these are linked by sharing corners with rings of three tetrahedra. The gaps between successive sandwiches are filled partly by potassium atoms (occurring only between pairs of six-membered rings and so fewer than in mica), and partly by the rings of three tetrahedra. The tetrahedral component has some degree of threedimensionality since some of its tetrahedra share all corners. Its $\mathrm{Si}: \mathrm{O}$ ratio is $9: 2 \mathrm{I}$ and its sharing coefficient is 1.83 as compared with $2: 5$ and 1.75 for micas and $1: 2$ and 2.0 for framework silicates (Zoltai, 1960).

Rings of three tetrahedra of the kind found in zussmanite have been reported also for benitoite ($\mathrm{BaTiSi}_{3} \mathrm{O}_{9}$; Zachariasen, 1930), wadeite ($\mathrm{Zr}_{2} \mathrm{~K}_{4} \mathrm{Si}_{6} \mathrm{O}_{10}$; Henshaw, 1956), pseudowollastonite (CaSiO_{3}; Dornberger-Schiff, 1961), and margarosanite $\left(\mathrm{Pb}[\mathrm{Ca}, \mathrm{Mn}]_{2} \mathrm{Si}_{3} \mathrm{O}_{9}\right.$; Freed, 1969). Interatomic distances and angles within these rings are broadly similar for all five structures. For zussmanite, the $\mathrm{Si}_{3}-\mathrm{O}-\mathrm{Si}_{3}$ bridge angle of approximately 132° is somewhat smaller than others in the structure. $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ angles are close to ideal in these rings, but $\mathrm{Si}-\mathrm{O}$ distances are a little larger than usual (average I. $65 \AA$).

Rings of six tetrahedra. Although only trigonal and not hexagonal symmetry is imposed upon the rings of six tetrahedra, they are nevertheless remarkably close to being hexagonal. The four independent $\mathrm{Si}-\mathrm{O}$ distances for the ...Si-O-Si... ring are
$3.08,3.07,3.05,3.06 \AA$, the two $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ angles are 142.5 and 142.0°, and the two $\mathrm{O}-\mathrm{O}-\mathrm{O}$ angles are 120.4 and 119.6° (107.24 and 132.8° in ferri-annite; Donnay et al., 1964a). These rings are thus more nearly hexagonal than corresponding rings in many micas, and this fact is reflected also in the potassium-oxygen coordination polyhedron with K-O distances 3.00 and $3.0 \mathrm{I} \AA$ as compared with 3.05 and $3.35 \AA$ in ferriannite.

In zussmanite the adjustment of the six-membered rings of tetrahedra to the rather larger dimensions of the octahedral layer is achieved by a regular tilting outwards of

Figs. 7 and 8: Fig. 7 (left). Test for centro-symmetry (after Howells et al., 1950). The curve obtained for zussmanite is consistent with the presence of hyper-symmetry. Fig. 8 (right). Perspective view of part of zussmanite structure with tetrahedra and octahedra labelled for tabulating interatomic distances and angles.
all tetrahedra rather than by the rotations and tilts observed in many micas. This is possible because the six-rings are not linked directly to one another. The outward tilt of the tetrahedron also allows the linkage between opposite 6 -rings by means of an edge of a tetrahedron in the ring of three. The potassium coordination polyhedron (fig. II) shows the distance between opposing inner basal oxygens to be $3 \cdot 18 \AA$, whereas the outer basal oxygens are separated by $2 \cdot 74 \AA$ (the tetrahedral edge $\mathrm{O}_{16}-\mathrm{O}_{17}$). The degree of tilting is also indicated by the difference in z-coordinates ($0.23 \AA$) as between atoms $\left(\mathrm{O}_{16}, \mathrm{O}_{17}\right)$ and $\left(\mathrm{O}_{15}, \mathrm{O}_{18}\right)$ making the basal oxygens of the tetrahedra non-coplanar. Because of the constraint of the ring of three tetrahedra the 'inter-layer' distance $3.18 \AA$ is small compared with the corresponding $3.40 \AA$ in ferri-annite.

Octahedral layer. It is of interest to compare the octahedral layer in zussmanite with that in certain trioctahedral micas. In all of these minerals the octahedra are not regular but are flattened in the direction perpendicular to the layer. The flattening is shown clearly by comparison of shared and unshared edges as in table V, and it can be seen to be most pronounced in zussmanite. The similarity in octahedral dimensions is closest between zussmanite and ferri-annite, as would be expected since the latter has an octahedral layer fully occupied by Fe ions. The flattening has been interpreted

Table III. Interatomic distances
$\mathrm{Fe}-\mathrm{O}$ and $\mathrm{Fe}-\mathrm{OH}$ distances in octahedral layer (in $\AA \pm 0^{\circ} 02$). First number refers to iron; second number refers to $(\mathrm{O}, \mathrm{OH}) .(\mathrm{OH})$ ions are $\mathrm{I}, 2,3,4,5,6,10, \mathrm{II}, \mathrm{I} 4$

Octahedron I		Octahedron 2		Octahedron 3	
I-I	2-11	2-2	2.13	3-8	$2 \cdot 21$
1-2	2•1I	2-6	$2 \cdot 10$	3-10	2.II
I-3	2•II	2-7	2.19	3-11	$2 \cdot 14$
I-4	$2 \cdot 11$	2-8	$2 \cdot 19$	3-12	2-2I
1-5	$2 \cdot 11$	2-9	2.15	3-13	$2 \cdot 11$
I-6	2.11	2-10	2.11	3-14	2.12
Average	2.11	Average	2.14	Average	2.17

$(\mathrm{O}, \mathrm{OH})-(\mathrm{O}, \mathrm{OH})$ distances in octahedral layer (in $\AA \pm 0.03)$.
Octahedron $\mathrm{I}(\mathrm{OH})_{1}-(\mathrm{OH})_{2}$ and five equivalents: $3 \cdot 20$ (long edges)
$(\mathrm{OH})_{1}-(\mathrm{OH})_{6}$ and five equivalents: $2 \cdot 74$ (short edges)
Octahedron 2

$7-8$	3.25	$7-10$	2.84	$11-12$	3.23	$11-14$	2.77
$8-2$	3.26	$10-8$	2.8 I	$12-8$	3.21	$14-12$	2.84
$2-7$	3.25	$8-9$	2.85	$8-11$	3.24	$12-13$	2.85
$9-6$	3.24	$9-2$	2.83	$13-10$	3.22	$13-8$	2.84
$6-10$	3.21	$2-6$	2.74	$10-14$	3.32	$8-10$	2.81
IO-9	3.18	$6-7$	2.83	$14-13$	3.24	ro-11	2.77
Average (long)	3.23	Average (short)	2.82	Average (long)	3.24	Average (short)	2.81

Distances in tetrahedral layer $(\AA \pm 0.02)$
$\mathrm{Si}-\mathrm{Si}$ distances

$\mathbf{I}-2$	3.08	$\mathbf{1 - 3}$	3.05	$3-3$	2.99
$\mathbf{I}^{\prime}-2$	3.07	$2-3$	3.06		

Si-O distances (Si numbers given first)					
Tetrahedron I		Tetrahedron 2		Tetrahedron 3	
- 7	1.59	2-8	I-62	3-16	I. 67
I-I5	1. 63	2-15	1.62	3-17	1.67
I-17	I. 60	2-16	I. 60	3-19	I. 64
I-18	1.63	2-18	1.62	3-20	I. 64
Average	1.61	Average	I.61	Average	1. 65

$\mathrm{O}-\mathrm{O}$ distances

Tetrahedron I

Tetrahedron 2	
$8-15$	2.66
$8-16$	2.66
$8-18$	2.69
15-16	2.63
15-18	2.63
16-18	2.62
Average	2.65

Tetrahedron 3

7-15	2.68
$7-17$	2.64
$7-18$	2.64
15-17	2.64
15-18	2.55
17-18	2.63
Average	2.63

16-17	2.74
16-19	2.7 I
16-20	2.69
17-19	2.69
17-20	2.73
I9-20	2.66
Average	2.70

$\mathrm{K}-(\mathrm{O}, \mathrm{OH})$ distances $(\AA \pm 0.02)$

$$
\mathrm{K}-\mathrm{O}(15) \quad 3.00 \quad \mathrm{~K}-\mathrm{O}(\mathrm{I} 8) \quad 3.0 \mathrm{I} \quad \mathrm{~K}-\mathrm{OH} \text { (II) } 3.83
$$

O-O distances in K coordination polyhedron $(\AA \pm 0.03)$

II-I5	3.39	II-I8	$3 \cdot 40$	I5-I8	$3 \cdot 18$

Table IV. Interatomic angles

$\mathrm{O}-\mathrm{Fe}-\mathrm{O}$ angles in octahedral layer $\left(\pm 0 \cdot 7^{\circ}\right)$. Numbers refer to $(\mathrm{O}, \mathrm{OH})$ atoms Octahedron I

I- 2	$98 \cdot 9$	I-4	180	I- 5	$8 \mathrm{I} \cdot \mathrm{I}$
Octahedron 2					
2-6	80.7	6-7	82.5	7-9	178.2
2-7	$97 \cdot 7$	6-8	$179 \cdot 8$	7-10	82.5
2-8	98.1	6-9	99.2	8-9	$82 \cdot 4$
2-9	83.1	6-10	99.4	8-10	$8 \mathrm{I} \cdot 7$
2-10	179.8	7-8	$95 \cdot 9$	9-10	$96 \cdot 7$
Octahedron 3					
8-10	8I. 2	10-11	81.5	11-13	178.0
8-II	$96 \cdot 3$	10-12	173.8	11-14	81.4
$8-12$	93.4	10-13	99.4	12-13	82.8
$8-13$	$82 \cdot 1$	10-14	1034	12-14	$81 \cdot 9$
8-14	174.5	II-12	$96 \cdot 2$	13-14	100.1

$\mathrm{O}-\mathrm{Si}-\mathrm{O}$ angles in tetrahedra $\left(\pm \mathrm{I}^{\circ}\right)$
Tetrahedron I

7-15	112.9	7-18	$110 \cdot 3$	15-18	$108 \cdot 9$
7-17	111.5	15-17	109.8	17-18	103.1
		Average	109.4		
rahedron 2					
8-15	110.4	8-18	112.5	15-18	$103 \cdot 7$
8-16	111.6	15-16	109.4	16-18	108.9
		Average	109.4		
rahedron 3					
16-17	110.3	16-20	108.7	17-20	109.0
16-19	109.5	17-19	III•I	19-20	108.3
		Average	109.5		

Si-O-Si bridge angles $\left(\pm 0.7^{\circ}\right)$
$\begin{array}{llll}1-15-2 & 142.5 & \mathrm{I}-\mathrm{I} 8-2 & 142.0\end{array}$
$\begin{array}{llll}\mathrm{I}-\mathrm{I} 7-3 & 137.6 & 2-\mathrm{I} 6-3 & 138.9\end{array}$
3-19-3 $131 \cdot 6$
O-O-O angles in rings of six tetrahedra ($\pm 0.8^{\circ}$)
$\begin{array}{ll}18-15-18 & 120.4\end{array}$
$15-18$ - $15 \quad 119 \cdot 6$
as due to a tendency for shared oxygens to come closer and thereby shield neighbouring Fe atoms from one another.

There are three non-equivalent Fe octahedra in the structure, and the environment of each is quite different. $\mathrm{Fe}(\mathrm{r})$ has a three-membered ring on each side of the layer at the level of the potassium cations; these three-rings are not linked directly to the octahedral layer. The $\mathrm{Fe}(2)$ octahedron shares oxygens with three tetrahedra, two on one side of the octahedral layer and one on the other. The $\mathrm{Fe}(3)$ octahedron similarly shares oxygens with three tetrahedra but in addition it has a potassium atom on one

Table V. Lengths of shared and unshared edges of octahedra in phlogopite, ferri-annite, ferri-phlogopite, and zussmanite

	Shared	Unshared	Zussmanite	Shared	Unshared
Phlogopite*	$2.80 \AA$	$3.05 \AA$	Average of all octahedra	2.79	3.22
Ferri-annite \dagger	2.8 I	3.14	Average of octahedron I	2.74	3.20
Ferri-phlogopite \dagger	2.85	3.10	Average of octahedron 2	2.82	3.23
			Average of octahedron 3	2.8 I	3.24

* Zvyagin and Mishchenko, 1962.
\dagger Donnay et al., $1964 a$.

Figs. 9 and io: Fig. 9 (left). Part of octahedral layer showing three crystallographically distinct octahedra with oxygens labelled for tabulating interatomic distances and angles. Oxygens that are not shown are related by symmetry to others that are. Fig. Io (right). Rings of six and three tetrahedra with Si and O atoms labelled.
side and a three-ring at the same distance on the other. The Fe(3) octahedron is displaced slightly from the plane of the octahedral layer away from the potassium; the octahedral layer is thus not perfectly flat, but has slight hummocks in it alternating in direction since they are always concave toward the neighbouring potassiums.

Further differences are noted between the three kinds of Fe octahedron. In $\mathrm{Fe}(\mathrm{I})$, all $\mathrm{Fe}-\mathrm{O}$ distances are equal and relatively short, whereas in the $\mathrm{Fe}(3)$ octahedron,
because of the K ion on one side, $\mathrm{Fe}_{3}-\mathrm{O}_{8}$ and $\mathrm{Fe}_{3}-\mathrm{O}_{12}$ are significantly larger than the three distances on the other side of the octahedron $\left(\mathrm{Fe}_{3}-\mathrm{O}_{11}\right.$ is also slightly longer). In the $\mathrm{Fe}(2)$ octahedron also, the two oxygens nearest to the K ion $\left(\mathrm{O}_{7}\right.$ and $\left.\mathrm{O}_{8}\right)$ are furthest from $\mathrm{Fe}(2)$. The relationship between the K ions and distortions of the

Fig. II. Co-ordination polyhedron of oxygens around a potassium atom (approximately a hexagonal prism and bipyramid).

Table VI

	Cations			
Anions	$\mathrm{Fe}=\frac{1}{3}$	$\mathrm{~K}=\frac{1}{12}$	$\mathrm{Si}=\mathrm{I}$	Sum of valence strengths
$(\mathrm{OH})_{11}$	$3 \times \frac{1}{6} \times 2$	-	-	I
$(\mathrm{OH})_{1}$	$3 \times \frac{1}{6} \times 2$	-	-	I
$(\mathrm{OH})_{10}$	$3 \times \frac{1}{6} \times 2$	-	-	I
O_{8}	$3 \times \frac{1}{6} \times 2$	-	$\mathrm{I} \times \frac{1}{4} \times 4$	2
O_{7}	$3 \times \frac{1}{6} \times 2$	-	$\mathrm{I} \times \frac{1}{4} \times 4$	2
O_{15}	-	$\mathrm{I} \times \frac{1}{12} \times \mathrm{I}$	$2 \times \frac{1}{4} \times 4$	2
O_{18}	-	$\mathrm{I} \times \frac{1}{12} \times \mathrm{I}$	$2 \times \frac{1}{4} \times 4$	$2 \frac{1}{12}$
O_{17}	-	-	$2 \times \frac{1}{4} \times 4$	2
O_{18}	-	-	$2 \times \frac{1}{4} \times 4$	2
O_{19}	-	-	$2 \times \frac{1}{4} \times 4$	2

octahedral layer may contribute to the production in general of a regular layer stacking sequence.

Layer stacking. It was observed on the X-ray photographs that the strong pseudocell reflections were relatively sharp whereas the other reflections were weak and slightly streaked parallel to c^{*}. The degree of streakiness varies from one crystal to another.

In a regular rhombohedral stacking the layer sequence is $A B C A B C$, etc., with displacements of $\left(\frac{1}{3}, \frac{2}{3}\right)$ between successive layers. The possibility of mistakes in layer stacking giving rise to other layer sequences was considered. If the strong reflections were considered as produced mainly by the Fe atoms, and displacements of the layers left the Fe arrangement undisturbed, this might have explained the observed effects. However, no reasonable system of displacement could be postulated which did not also involve changes in the Fe layer sequence, making these $A A A$ or $A B A B$ or random. Any of these sequences would have given an array of sub-cell reflections different from those observed.

A more likely explanation of the streaks is that there are displacements of the silicon-oxygen layers parallel to (000 I), by translations corresponding to the $x^{\prime} y^{\prime}$ vectors of the small pseudo-cell, or multiples of these. The observed rule that only reflections with $k=3 h \pm 13 n$ would be sharp, would be obeyed.

It follows from the above that the structure is to a small degree disordered, and that the rhombohedral symmetry observed is strictly that of an 'average' structure. Also, agreement between observed intensities and those calculated for a regular structure would perhaps be a little better if there were no disorder in the structure.

The valency balance in zussmanite is shown in table VI, ignoring the small amount of trivalent ions replacing Fe^{2+} and assuming that no Al is present replacing Si . It is seen that the unbalance on O_{15} and O_{18} would be cancelled if one in six of the silicon atoms of the six-membered rings were replaced by aluminium. This proportion of two per formula unit is a little higher than that given by the chemical analysis (1.4 per formula unit). Substitution of aluminium for a number of silicon atoms that is not a multiple of three is a further indication that the rhombohedral symmetry of the structure is statistically rather strictly obeyed. It is tempting to speculate whether a version of the zussmanite structure entirely lacking in both potassium and aluminium would be viable, and also whether a magnesium end-member could exist.

Acknowledgements. One of us (A. L-V.) is grateful to the Gulbenkian Foundation for a scholarship during tenure of which the above work was carried out, and to the Junta de Investigações do Ultramar, Lisbon, for leave of absence. We wish to acknowledge, also, considerable help with computing from Dr. J. S. Rollet.

REFERENCES

Agrell (S. O.), Bown (M. G.), and McKie (D.), 1965. Deerite, howieite, and zussmanite, three new minerals from the Franciscan of the Laytonville District, Mendocino Co., California. Min. Mag. 35, liv; Amer. Min. 50, 278.
Donnay (G.), Donnay (J. D. H.), and Takeda (H.), $1964 a$. Trioctahedral one layer micas. II. Prediction of the structure from composition and cell dimensions. Acta Cryst. 17, 1374.

- Morimoto (N.), Takeda (H.), and Donnay (J. D. H.), 1964b. Trioctahedral one layer micas. I. Crystal structure of a synthetic iron mica. Ibid. 1369.
Dornberger-Schiff (K.), 1961. The symmetry and structure of strontium germanate $\left(\mathrm{SrGeO}_{3}\right)$ as a structural model for pseudowollastonite, $\mathrm{Ca}\left(\mathrm{SiO}_{3}\right)$. Soviet Physics, Crystallography, 6, 694, transl. from Кристаллография, 6, 859 [М.А. 16-1 33].
Freed (R. L.), 1969. Determination and refinement of the crystal structure of margarosanite, $\mathrm{PbCa}_{2} \mathrm{Si}_{3} \mathrm{O}_{9}$. Zeit. Krist. (in the press).
Henshaw (D. E.), 1956. The structure of wadeite. Min. Mag. 30, 585.

Howells (E. R.), Phillips (D. C.), and Rogers (D.), 1950. The probability distribution of X-ray intensities. II. Experimental investigation and the X-ray detection of centres of symmetry. Acta: Cryst. 3, 210.
Lopes-Vieira (A.) and Zussman (J.), 1967. The crystal structure of the mineral zussmanite. Min. Mag. 36, 292.
Rogers (D.) and Wilson (A. J. C.), 1953. The probability distribution of X-ray intensities. V. A note: on some hypersymmetric distributions. Acta Cryst. 6, 439.
Zachariasen (W. H.), i930. The crystal structure of benitoite, BaTiSi $_{3} \mathrm{O}_{9}$. Zeit. Krist. 74, 139.
Zoltai (T.), 1960. Classification of silicates and other minerals with tetrahedral structures. Amer. Min. 45, 960.
Zvyagin (B. B.) and Mishchenko (К. S.) [Звяrин (Б. Б.) и Мищенко (К. С.)], 1962. Electronographic data on the structure of phlogopite-biotite. Soviet Physics: Crystallography, 7, 502; transl. from Кристаллография, 7, 623.
[Manuscript received I4 June 1968]

[^0]: ${ }^{1}$ Now at Lab. de Technicas Fisico-Quimicas, Junta de Invest. do Ultramar, Alameda D. Alf. Henriques, 41-4 Esq. Lisbon, Portugal.
 ${ }^{2}$ Now at the Department of Geology, The University, Manchester 13, England.
 C 0608

[^1]: ${ }^{1}$ Only if these rings of tetrahedra are directly opposed across the K atom do subsequent layers build up to give a sub-cell of Fe atoms which is rhombohedral as required.

