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SUMMARY. If the true values of a number (n) of variables are exactly related by one or more (m) 
equations but all experimental values are liable to experimental errcr then, provided the errors of 
measurement can be assumed to be symmetrically distributed about a zero mean, provided the rela- 
tions are linear, and provided the assessed probable errors of measurement of the several variables 
remain in constant ratio from one set of measurements to another, the best estimate of the relations 
derived from N sets of measurements will be given by the latent vectors corresponding to the rn 
smallest latent roots of the n-square matrix whose terms are S .w  i ~-ij ( ik  (summed from i -- I to 
i = N) for all j and k from ~ to n, where w i is the weight of the ith set of measurements and ~j is the 
standardized value of the ith measurement of the jth variable measured from its weighted mean. 

It is also shown that the alleged inconsistency of the maximum-likelihood estimate of the variance 
in such a case is simply a confusion of the root-mean-square residual with the root-mean-square 
normal residual. 

An Autocode computer programme has been written to carry out the necessary operations for 
correlating the physical properties and chemical properties of an isomorphous series of minerals 
using this procedure. 

HARDLY any mineral  is a pure chemical compound,  and one of the principal  tasks 
of mineralogy is to at tempt to correlate the physical properties of minerals with their 
chemical composit ion.  There may be a unique,  one-to-one relation, or the physical 
properties of a mineral  of a given structure and composi t ion may vary in consequence 
of order-disorder  phenomena,  crystal imperfections, etc. ; in what follows we shall 
ignore these complications and assume that  for any given crystal structure a knowledge 
of  the exact chemical composit ion will suffice to define the physical properties. 

Since all the quantities involved are assumed to be linked by an exact relation, the 
' t rue  regressions'  of Lindley (I947) are identical with his ' func t iona l  re la t ion ' ;  bu t  
the quantities are all liable to experimental  error, and ordinary regression analysis is 
no t  applicable, because it assumes, in effect, that  all error falls on the ' d e p e n d e n t '  

variables. 
Two lines of approach to the problem are open, bu t  each runs into certain diffi- 

culties. Considering first the max imum likelihood approach, and beginning 
with a simple two-dimensional  example:  suppose we have n paired observations 
)(1, Y1, )(2, Y2 . . . .  , X, ,  Y,, and the distr ibution of error for each pair of observations 
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is measured by a pair of probability density functions ~(X,--x),  ~(Y~--y), then the 
likelihood that the points all obey a relation f (x ,  y) = o is given by 

n 
l a P  = c o n s t . - - i ~  1 In f ~ i (X i - -x )dx+ln  f (~i(Y~--y)dy, 

the integrals being taken over the whole range of values (x, y) satisfying f (x ,  y) = o. 

FIG ~. 

I f  this relation is of  known form but contains 
unknown coefficients, which we are seeking to 
adjust to the best possible fit to the observed 
data, it will be obvious that a knowledge of the 
form and parameters of the probability density 
functions is essential. I f  the functions approxi- 
mate to normal Gaussian, with variances ~2 Xi' 
a ~ the likelihood P that any pair of true values ffi ,  

x, y will give rise to observed values X, Y is 
given by In P =  K--(X--x)2/a~--(Y--y)2/e~ 
where K is a constant. Let q be any point on 

the graph of the function f (x ,  y) = o taking a,, a~ as units along the axes of x and y 
respectively (fig. I); then all points on a circle with centre q are equally likely to be the 
representation of the observed values corresponding to the true point q, and all values 
of  0 (fig. I) are equally likely. Accordingly, if f (x ,  y) is linear, the mean value of the 
square on the normal to f (x ,  y) from any point at a distance r from q is 

~2 = _I i '  r~ sin 20 dO = r2/2; 
J 
0 

and if f (x, y) is non-linear, r2/2 is a good approximation to ~2 provided the radius of 
curvature of the graph in the neighbourhood of q is large compared with r. 

Similarly in three dimensions I"r12~ / ~ri2 
~ : f r2sin=OcosOdO cosOdO ~- re~3, 

0 

and generally in n dimensions ?2 = r2/n. 
If, then, we have N sets of  observations of n related variables (Xq, i = i, 2 ..... N; 

j = I, 2 ..... n), the true values of which are known to be connected by a relation 
f (x)  =-f(a, b,..., X~l, x~, x,~) = o, of  known form but with unknown coefficients, we 
can apply the maximum likelihood method by minimizing E R~ = E E (X,~--x}~)2/e~a 
(summed from i = I to N a n d j  = I to n) provided the errors are distributed normally 
or quasi-normally, and provided f (x)  does not depart too far from linearity. But we 
must remember that in so doing we cannot locate the true values, x~3., but only those 
values x~j for which the sum of the standardized normal squared residuals is mini- 
mized, and the expectation of this sum is only I/n that of the sum of the true stan- 
dardized squared residuals2 However, we are not limited to cases where the relation 

This point has commonly been overlooked, e.g. Lindley, I947, P. 237; Kendall, I956, P. 65; 
cf. Hey and Hey, I96O, p. 616. 
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between the variables is defined by  a single equat ion.  I f  it  requires m equat ions (some 
o f  which may  be known  a pr ior i )  to define their  relat ions completely,  the relat ions 
can be represented by  a surface of  n - m  dimensions in n-space;  and  this can be 
defined by any m surfaces o f n - I  d imensions  (corresponding each to a single equat ion)  
tha t  intersect in it. Therefore  when we consider  the expecta t ion of  the re la t ion o f  the 
mean  squared s tandardized  norma l  residual  to the mean  squared s tandardized  
true residual  (which will be I) we may  define the  (n-m)-dimensional  surface by m 
local ly or thogonal  primes ~ provided  its local  curvatures  are not  too  great.  As the 
mean  squared no rma l  residual  to each of  these pr imes will have an expected value 
o f  I /n ,  the to ta l  mean  squared norma l  residual  to the (n-m)-dimensional  surface 

will be m / n .  
The al ternat ive app roach  is by  a least-squares technique,  which has the  advantage  

o f  not  requir ing a no rma l  or quas i -normal  d is t r ibut ion  of  the errors  of  measurement ,  
bu t  merely a symmetr ical  one (Hami l ton ,  I964), bu t  here we have a difficulty deciding 
what  set of  squared residuals to minimize.  To take  the simplest  example,  if  x, y 
are l inearly related,  we could write the equat ion y ~- a x + b ,  or x ~- c y + d ,  or 
p x + q y  = I, and  the residuals R = y - - a x - - b ,  etc.; minimizing the sums of  squared 
residuals leads to  ~ = ?S, X Y / E X  2, I /~ = ) 2 Y 2 / ~ X Y ,  and  f i /~  = t a n 0 ,  where 
cot  20 = ( Z X 2 - Z Y 2 ) / 2 Z X Y ,  respectively. As we suppose X and Y are both  subject  
to  errors  of  measurement ,  the first two solutions, which are in fact the two regressions, 
can  be rejected because they offer unsymmetr ica l  solut ions to a symmetr ical  p rob lem;  
the th i rd  is also unsat isfactory since it is affected by  change of  scale. To obta in  
a solut ion independent  of  scales we must  el iminate all units and  express our  variables 
as pure  numbers ,  and  the only symmetr ica l  and consistent  solut ion appears  to  be tha t  
suggested by Kummel l  (1879); and  this leads to the same result as the ma x imum 
l ike l ihood technique.  2 Geometr ical ly ,  Kummel l ' s  least squares solut ion can be expres- 
sed as:  for each set of  observat ions  separately,  let the da ta  be s tandardized  by  t ak ing  
their  s tandard  deviat ions of  er ror  a as units, and  graphed  in n-space;  note  the var ia t ion  
in the  length Rt of  the  no rma l  f rom the po in t  to the surface f ( x )  = o with the co- 
efficients a, b,..., and  adjus t  these coefficients so tha t  s  is a min imum.  

I t  will be obvious tha t  a l though Kummel l  only considered a single equat ion  con- 
necting the n variables,  cor responding  to a surface of  n - t  dimensions in n-space, his 
p rocedure  is equal ly appl icable  where the relat ion can be represented by  a surface of  
fewer, say n - m ,  dimensions,  to define which m equat ions  o f  relat ion will be required.  

In n dimensions, a surface defined by m linear equations is called an (n-m)-flat; if n-m = I 
we have a line, if n-rn = 2 a plane, while the surface of n-I dimensions is a prime (the term hyper- 
plane is ambiguous when n > 4). 

2 Kummell's equation 4 (loc. cit., p. 98) is S,Z(X~:~--x'~)2/cr~ . = a minimum, in the symbols used 
here. 

3 We assume that the standard errors of all the measurements are known, or at least can be esti- 
mated, and are symmetrically distributed about a zero mean. It is sometimes stated (Madansky, 
t959, P. I79) that if all the error variances are known we have an over-identified situation, but this 
is another consequence of the failure to distinguish between residuals and normal residuals; in 
Madansky's example of two variables whose error variances ~ ,  ~ are known and do not vary from 
one pair of measurements to another, knowledge of the absolute values of the variances instead of 
merely their ratio simply enables us to assess the average distance between the true points and the 
feet of the standardized normals from the experimental points to the line. 
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In  general, the minimum of  ER~ can only be found by successive approximations;  I 
for a direct solution f (x)  must be linear and the ratios ~ " 2 .  . 2 Gi l .  Gi2 . . . . .  Gin must not  vary 
with i. Under  these conditions the solution for the bivariate case was given by 
Kummel l  (I879); 2 Pearson (I9oI)  derived a solution for the multivariate relation, on 

2 the implicit assumption that  all the Gij are equal, but  as it involves finding the roots o f  
a determinantal equation it has been little used; a solution on the same assumption 
for the case where there are several linear relations between the variables is implicit 
in the work of  Brown and Fereday 0958).  

The extension of  Kummell ' s  solution to multiple linear relations between several 
variables, subject to the condition 3 that  the ratio o f  error variances is constant f rom 
one set of  experimental data to another, is straightforward. We can write G 2.. 
where w~ are the weights of  the N sets of  observations and ~ the error variances o f  
the n variables of  a set of  unit weight. It  will be convenient to adopt  the %. as units 
along the several axes of  n-space, and also to transfer the origin to the weighted mean 
of  the observations, when we write ~:~j. = (X,~i--Y,j)/~j, ~s = (x~j--~)/G~, where 
Xj = Ewi X~j/Ewi (summations f rom i ---- I to  i = N). 

The set of  linear relations between the variables, which we take to be m in number, 
define an (n-m)-flat in n-space, and since this is equally well defined by any m 
independent primes (i.e. (n-I)-flats) that  intersect in it, we can with loss of  generality 
postulate m mutually or thogonal  equations with normalized coefficients, 
Z~h~ ~ = ch (summation f rom j = ~ to N; h = x, 2 ..... m), with the condition 
]s = O if h ~ k, or I if h = k. 

With these co-ordinates and postulates, it can readily be shown (eft Appendix, 
p. 88) that for a minimum of  E R  ~ the desired (n-m)-flat passes through the weighted 
mean of  the observations, so that  all the ch are zero, and is defined by the latent vectors 
corresponding to the m smallest latent roots o f  the n-square matrix whose terms are 
Zw~ .6~ 3. ~k (summed f rom i = I to N)  for all j and k from I to n. The resulting 
equations will, o f  course, be in terms of  .~', and must  be destandardized and the origin 
restored to its original position; they will usually be in all n variables, which is in- 
convenient, but  can be remedied since we can properly combine them to eliminate up 
to m - I  variables and so derive equations for any variable in terms of  any n-m of  
the others (such recombination would, of  course, be out of  order with a set of  regres- 
sion equations). 

x See, e.g. Deming, I943, chap. 4. 
Madansky 0959, PP. zoo-z) points out that this solution, also cited by Deming 0943, P. 184), 

by Lindley 0947, P, z36), and by Kendall 0956, P. 64), is not quite correctly stated, and in con- 
sequence only yields a correct result if dy/dx is positive. A correct solution is given by 

dy/dx = {P +~/(p~ + k~Q2)}/Q, 

where P = E(Y--Y)~-k2E(X--R)  2, Q = 2 E ( X - - X ) ( Y - - Y ) ,  and k = %/a x. 
3 This condition is not as restrictive as it might at first appear. As Kummell (I879) and Hamilton 

0964) point out, it will normally be preferable to assess the probable standard deviation of error 
from experience of the measuring technique rather than to rely on internal estimates derived from 
a small number of repetitions. And if the sets of data are of varying precision (as will usually be the 
case with data culled from the literature) the loss of information involved in weighting each set of 
observations according to an assessment of its least accurate member is not a serious penalty to pay 
for a direct method of computation. 
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While it is a very simple matter to set up the matrix Zw~ ~:~. -~,~k, computation of its 
smallest latent roots and the corresponding latent vectors by a desk calculator is 
tedious as soon as the number of variables exceeds four, and prohibitively so as soon 
as there is more than one equation of relation. Fortunately, programmes are available 
to handle the task on all but the smallest computers. 

Applications in mineralogy. The above discussion has been general, applicable to 
any collection of related variables; in most mineralogical problems the data are 
subject to certain known relations in addition to the unknown ones we are seeking, the 
most obvious being that the sum of the chemical data is ioo ~ within the experi- 
mental error. It  might appear desirable to utilize this knowledge to eliminate one or 
more variables at the start, but this is not so; in fact we shall obtain slightly different 
results according to which variable or variables we eliminate; completely consistent 
results only result f rom completely symmetrical treatment. Fortunately, most com- 
puter programmes for latent roots and vectors are competent to handle a singular 
matrix, so the known relation is reproduced automatically as a latent vector corre- 
sponding to a zero latent root. 

A computer programme has been written in Autocode for use on the Atlas computer /  
by which linear relations between the chemical composition and the physical proper- 
ties of  a mineral of variable composition can be derived; and if there are p independent 
chemical components, the relations between any p +  I of  the variables, chemical and 
physical, can be displayed. 

The programme also computes a number of other useful statistics: since marked 
correlation, positive or negative, between any pair of  variables 2 results in very unstable 
coefficients in any equation in which both appear, the matrix of partial correlation 
coefficients is computed. Since the latent vectors are orthogonal, the sum of the latent 
roots corresponding to the m vectors computed is ZR 2, and if the standard errors of  
measurement were correctly estimated and there are no unrecognized sources of  
variation, we should have the root-mean-square standardized residual 

= x/(nZR2/mZw) ,~ I; 

in practice R will usually be a good deal larger, because of such factors as non- 
linearity due to ordering, neglected chemical components, etc., but it does provide a 
useful check and is therefore computed. The simplest check on linearity is to plot the 
residuals of the several sets of data for the several equations against one or more of the 
variables, and the programme is arranged to provide these if desired. 

It  should be noted that if an equation is derived for one of the physical variables in 
terms of the chemical composition at least one chemical component will necessarily 
be eliminated, and the coefficients of the equation obtained must therefore be inter- 
preted with caution (see, e.g. Louisnathan and Smith, I968; Smith, Stephenson, Howie, 
and  Hey, I969). In as simple a system as an iron-free hornblende with Na, Ca, Mg, 

This programme in typescript is available from the author, with notes, but excluding the routine 
for latent roots and vectors. (This latter is London Computer Centre Library Programme --519.) 

Which may be intrinsic, as when all the refractive indices are similarly affected by an ionic substi- 
tution, or may be an accident of the selection of specimens for study. 
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AV i, A1 i~, and Si as chemical variables (calculated t o  24(0,  OH) and assuming 
O H  = z), two of  the variables must be eliminated to meet the relations E(valencies)=46 
and Si§  i~ = 8, and it may  be convenient to choose A1 i~ and A1 ~ for elimination; 
then since there is no other element of  the same valency, only such substitutions as 
NaA1 ~- Si, Naa ~ Ca, or NaSi ~- MgA1 are possible, and no direct significance can 
be attached to individual coefficients. 

Finally, we may note that density data cannot properly be included in correlation 
calculations, because the error distribution in density determinations is notoriously 
skew; and that  because the birefringences of  a mineral are often known with higher 
precision than the difference of  the reported refractive indices, it is usually preferable 
to use one refractive index and the birefringences in correlation studies. Optic axial 
angles, being correlated, though non-linearly, with the birefringences, can be used to 
adjust the observed birefringences, and it is hoped to write a computer  programme for  
this purpose. 
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A P P E N D I X  

We have seen above that in the system of co-ordinates we have adopted both maximum 
likelihood and least-squares techniques require us to minimize the sum of weighted squared 
normal residuals to the correlation (n-m)-flat to obtain the best linear fit. If the flat is 

q$ 

defined by m linear, mutually orthogonal equations fh(~') ~ ~ ~hj ~ + e n  (h = t, 2 . . . . .  m ) ,  
j = l  

t h i s  s u m  i s  Z R 2  = wi ~_ O~hj ~ij ~-Ch �9 
h = l i = l  j - - 1  

For a minimum we must have 
N m 

o = a~RVaeh = ~ Y_, w~ah~ ( i j + c ~  
i = l j = l  

N 
for all h; as the observed values ~:i~ are measured from their weighted means, all ]~ w~ (~ 

i = 1  
are zero, and hence all ch are zero. 

We must also have for all h and j, remembering the orthogonality conditions E~hj az-j = o 
o r  I :  

0 = �89 --  Ph ahJ ~ ~ w~ ~ ~ik ~h~ -- Ph ~xhJ 
k = l i : l  

These mn equations can be written as a matrix equation W'A = A.M, where W is the 
n-square matrix whose k, jth term is Ewi ~:~i ~:~k (summed from i ~ I to N); A is the matrix 
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of  n rows and m columns whose terms are ~ks and has been postulated to be or thogonal  by 
columns and M is the m-square diagonal matrix whose non-zero terms are bc h. 

N o w  as W is symmetrical, we have W = V'A'~r where A is the diagonal matrix of  latent 
roots of  W, and ~r its (orthogonal) matrix of  row vectors; hence V ' A ' ~ ' A  = A 'M,  and 
premultiplying by ~r A'VC'A -- ~ ' A ' M .  Let )/~, /aq be the p th  and qth diagonal terms o f  
/ i  and M respectively and v~,q the term in the p th  row and qth column of ~r then 
;i v V~q = k~q V~q for all p = L 2,..., n and q = I, 2,..., m; the only solutions to this are either 
that all terms of  A are equal  (which will not  be true), and also all terms of  M are equal, o r  
that V 'A -- J ,  where J is one of  the permutations of  the columns of  the n • m matrix [D 0], 
where D is diagonal. Further,  since both  V and A are orthogonal ,  the only solutions (giving 
stationary values of  Y.R ~) are when A consists of  any m columns of  the latent vector matrix V;  
and direct expansion shows that the stationary values of Y.R z will be equal to the sum of the 
corresponding latent roots. Hence the min imum min imorum will be given by the latent 
vectors of  W corresponding to its m smallest latent roots. 

[Manuscript received 3 June I968; revised I8  October 1968] 


