Synthesis of aenigmatite

R. N. THOMPSON AND J. E. CHISHOLM

Department of Geology, The University, Manchester 13

SUMMARY. Aenigmatite with the formula $Na_4[Fe_{12}^{2+}Ti_2]Si_{12}O_{40}$ has been synthesized hydrothermally, at 700 °C and 1000 bars $P_{H_{20}}$, from an oxide starting material. The oxygen fugacity was controlled by means of an iron-wüstite buffer. An indexed X-ray powder pattern of synthetic aenigmatite is given, together with comparative data on two natural samples. One of the aenigmatites, from Kola, U.S.S.R., is known to be triclinic (Kelsey and McKie, 1964). The powder patterns of this and the synthetic aenigmatite are so similar that it is concluded that the latter is also triclinic, at least at room temperature.

AENIGMATITE (cossyrite) is a fairly common constituent of sodium-rich peralkaline igneous rocks. The unit cell of aenigmatite was recently determined by Kelsey and McKie (1964), who also surveyed the available chemical analyses. They found that modern analyses did not vary greatly, and suggested an idealized formula of Na₄[Fe²₁₀Ti₂]Si₁₂O₄₀. Ernst (1962) synthesized a titanium-free 'aenigmatite' during the course of a study of alkali amphibole stability relations, using the bulk composition Na₂O. 5FeO_x. 8SiO₂+excess H₂O. An X-ray powder diffractometer trace of this mineral gave similar *d*-spacings for principal peaks to those of a naturally occurring aenigmatite (U.S.N.M. 95499) from Julianchaat, Greenland. The titanium-free 'aenigmatite' had a rather limited stability field in terms of pressure (< 900 bars P_{H_2O}), temperature (maximum range of 650-800 °C at low P_{H_2O}), and oxygen fugacity (lower than produced by a fayalite-(magnetite+quartz) buffer).

This note reports the synthesis of titaniferous aenigmatite with a formula corresponding to that suggested by Kelsey and McKie. The starting material was a combined 'gel' and oxide mix. The Na₂O, FeO, and SiO₂ were first combined as a 'gel', using methods recently described by Hamilton and Henderson (1968). Then the appropriate amount of Specpure TiO₂ was mixed into the fired 'gel' by prolonged grinding in an agate mortar.

Charges of 'gel'+oxide were sealed, together with excess water, in tubes of silver/ palladium (Ag₇₀/Pd₃₀) alloy. These were placed, surrounded by a buffer of iron powder, in sealed gold tubes. Hydrothermal runs were made in conventional cold-seal apparatus. Aenigmatite was synthesized in runs of two to seven days duration at 700 °C (\pm 5 °C) and 1000 bars $P_{\rm H_s0}$. The oxygen fugacity was controlled by the iron-wüstite buffer. Yields of the mineral were above 99 %, indicating that its composition, excepting oxygen, was effectively that of the starting material. Rare high-relief prisms scattered in the aenigmatite powder were tentatively identified as a pyroxene, in negligible quantities.

The aenigmatite formed subhedral prisms, up to 3μ in length, with an elongation of 3:2 to 3:1. Its pleochroism (pale yellow-brown to very deep red-brown), high

Ř	Kola	Kanger	dlugssuaq		Synthetic	netic	Ř	Kola	Kanger	Kangerdlugssuaq		Synthetic	netic
I	d, Å	-	I $d, Å$	(~	d, Å	hkl	l	<i>d</i> , Å	(-	d, Å	(d, Å	hkl
(I) SA	60.8	NS	8.12		60.8	001, 010		1	wv	2.083	MA	2.085	232, 330, 332
ΜΛ	7.44	ΜΛ	7-47		7:43	01]	mw	2.075]	-	l	ļ	134, 411
WΛ	6.36	νw	6£.9		6.37	III		١	νw	2.062	νw	2-066	o43, o34, 413†
W	4.83	W	4.83	·	4.82	011, 11 <u>1</u>	*WVV	2.035	VVW	2.037	l	1	323, 4 <u>5</u> 0
W	4.41	W	4.39		4.40	0Ī2, 02Ī	тw	2.007	mm	2.010	шw	2.010	50
W	4.20	W	4.20	W	4.20	2 <u>7</u> 1, 20 <u>1</u>	VVW	1.974	WVV	676-1	l	I	<u>4</u> 42, 113, 520†
۷۷W*	3.79	ννw	3.78	I		$1\overline{2}2, 1\overline{1}2$	VVW	1.944	ννw	1.946	WVW	1-944	221, 23Ž, 302†
шw	3.71	шw	3.70	mw	3.70	022	٨N	700-I	νw	016.1	νw	016-1	032, 131, 311†
W	3.490	W	3.494		3.484	2 <u>3</u> 0, 2 <u>3</u> 1, <u>2</u> 12	[1	I		νw	1.867	
۸۷W*	3.363	٨٧٧	3.357		3.352	III	W.B.	1.805	WVV (I -820)	w R	1.800	
*WVV	3.208	l		WVV	3.237	1 <u>3</u> 0, 102, 121†		Con I	VVW	1-797	1	600 T	-
VS (2)	3.145	ΛS	3.148		3.150	012, 021	WVV .	1·768	٨٧W	1.768	ļ		
۷۷W*	3.064	ΝVW	3.048		3.046	$12\overline{2}, 3\overline{2}1$	w B	1.732	w B	1.731	mw B	1·729	
ms	2:937	sm	2.937	ms	2.934	01 <u>3</u> , 03 <u>1</u> , 120	M	679∙I	W	1.677	W	1∙678	
*WVV	2.862	ννw	2.864		2-866	<u>3</u> 31, 10 <u>3</u>		ļ		1	ΜΛ	1-630	
ΜΛ	2.806	٨N	2.813		2.805	<u>1</u> 22	Е	I-626	шB	I ·623	в	I •620	
ΜΛ	2.756	ΜΛ	2.757		2.752	<u>3</u> 22, 123, 311	νw	1·609	ΜΛ	119.1	ΜΛ	119.1	
s (3)	2.706	s	2.706		2.700	<u>1</u> 31, 003, 20 <u>3</u>	٨Ŵ	1.590	νw	1.589	ΜΛ	1.587	
WVV	2.660	٨٧W	2.656		2.656	1Ī3, 300	W	1.559	W	1.560	vvw B	1·55	
*WVV	2.582	٨٧٧	2.584	l		ž13, 34o	mw	1.513	мш	1.517	WVW	1.514	
s	2.547	s	2.544	0	2.542	21 <u>3</u> , 420	В	1·497	в	1.498	ΜΛ	I ·495	
*WW	2.513	WVV	2.505	I	[141, 322	mw	I·483	mw	1.483	шw	I ·480	
ΜΛ	2.460	ΜΛ	2:457		2:461		m R	1.468) mw	I .472 (ш В	1.465	
E	2.414	B	2.413		2:412	022, 2 <u>3</u> 3, 223	1) 	mm	1.466	1		
ΜΛ	2:346	ΜΛ	2:346	ΜΛ	2.347	14o, 44o	*M	I·374	W	1.374	ΜΛ	1.374	
WV	2:307	ΜΛ	2.311		2.302	<u>†</u> 21,	w * B	I·348	wΒ	1.347			
۷۷W*	2.220	ννw	2.222	ννw	2.233	$\overline{3}23, 2\overline{1}3, 22\overline{3}^{\dagger}$	т* В	066.1	vvw (1.334)	ann D	9000	
WVW	2.197	٨٧٧	2.192	٨٧٧	2.193	0 <u>4</u> 2,	a *	2000	MVV)	1.327)		VCC 1	
ms	2.119	sm	2.121	sm	2.118	$20\overline{4}, 3\overline{3}3$							
			*		1 5 - 5	7-W F	- 1-11		1				
			ב י	nes not	recordeu t	* Lines not recorded by Kelsey and McKie (1964)	e (1904).	л Н	ius other	T Plus other possible indices.	ndices.		

Error range allowed in d, 2 parts in 1000.

TABLE I. X-ray data for aenigmatite

254

R. N. THOMPSON AND J. E. CHISHOLM ON

SYNTHESIS OF AENIGMATITE

birefringence, and large extinction angle relative to the prism faces were all very similar to those of the naturally occurring mineral. Table I gives X-ray powder data for the synthetic mineral and natural specimens from Kola, U.S.S.R., and Kangerdlugssuaq, East Greenland. Exact localities and chemical analyses for both natural samples, and X-ray powder data for the Kola specimen, are given by Kelsey and McKie (1964).

The powder patterns were obtained using a Philips 11.46-cm diameter camera and Co-K α radiation ($\lambda = 1.79021$ Å), with an Fe filter and Si internal standard. The data for the Kola specimen are in reasonable agreement with those of Kelsey and McKie (1964), except that some additional weak reflections have been observed, of which all with d > 2.0 Å can be indexed successfully. The over-all agreement between the synthetic and natural specimen powder patterns is immediately apparent. However, in detail several minor differences occur: notably at d = 1.867 Å, 1.729 Å, 1.630 Å, and 1.495 Å. Nothing can be done to detect the causes of these differences, in the absence of synthetic crystals large enough for single crystal X-ray studies. Kelsey and McKie (1964) have suggested that natural high-temperature (and presumably synthetic) aenigmatite may be monoclinic, because they found specimens from volcanic parageneses to be polysynthetically twinned, whereas the Kola pegmatite specimen studied in detail by them is triclinic and untwinned. The synthetic sample powder pattern is so closely similar to the two natural ones that it seems unlikely that these three specimens belong to differing crystal systems. Thus, synthetic aenigmatite appears to be triclinic, at least at room temperature. The indices of reflections with d > 2.0 Å for all three specimens have been determined on the basis of Kelsey and McKie's (1964) triclinic cell. They correspond to those given by Berry on ASTM card 16-377. A point of interest is that the weak peak on the synthetic specimen pattern at d = 3.352 Å indexes as 111, an index not recorded by Berry.

The pressure (1 kb $P_{H_{2}O}$) at which this aenigmatite was synthesized is outside the P-T stability field of Ernst's (1962) titanium-free aenigmatite. This indicates, as would be expected, the larger stability field of the titaniferous phase. A full study of the stability relationships of this aenigmatite is in progress.

Acknowledgement. Professors W. S. MacKenzie and J. Zussman kindly read the manuscript.

REFERENCES

ERNST (W. G.), 1962. Journ. Geol. 70, 689. HAMILTON (D. L.) and HENDERSON (C. M. B.), 1968. Min. Mag. 36, 832. KELSEY (C. H.) and MCKIE (D.), 1964. Ibid., 33, 986.

[Manuscript received 12 September 1968]