a basis of $24(\mathrm{O}, \mathrm{OH})$ this corresponds to $\mathrm{Si} 7.74, \mathrm{Al}^{\mathrm{iv}} 0.26$, $\mathrm{Al}^{\mathrm{vi}} 0.12$, $\mathrm{Ti} 0.03, \mathrm{Fe}^{3+}$ $1.65, \mathrm{Fe}^{2+} \mathrm{I} \cdot 34, \mathrm{Mg} 2 \cdot 22$, Mn 0.08, $\mathrm{Na} 1 \cdot 36$, $\mathrm{K} 0 \cdot 10, \mathrm{Ca} 0 \cdot 46$, $\mathrm{OH} \mathrm{I} \cdot 16$; $\Sigma Y 5 \cdot 44$, $\Sigma X \mathrm{I} \cdot 92$. This composition is very near that of a magnesioriebeckite from Glen Lui, Aberdeenshire, described by McLachlan (195I), but the latter differs in having $2 \mathrm{~V}_{\alpha} 50^{\circ}$ and $\alpha:[00 \mathrm{I}] 14^{\circ}$. The optical data, together with the ratios $100 \mathrm{Fe}^{3+} /\left(\mathrm{Fe}^{3+}+\right.$ $\mathrm{Al}+\mathrm{Ti})=90.8$ and $100 \mathrm{Fe}^{2+} /\left(\mathrm{Fe}^{2+}+\mathrm{Mg}+\mathrm{Mn}\right)=36 \cdot 7$, show that the mineral is a magnesioriebeckite.

The consistent presence of this mineral in almost all the rock types, including aplites, pegmatites, zirconiferous syenites, garnetiferous syenites, and carbonatites, of this region deserves an explanation. It may be surmised that the crystallization of the amphibole was retarded because the enrichment of Na and K in the magma would have increased its solubility, giving preference to the formation of alkali feldspars and feldspathoids; however, owing to the relative impoverishment of the magma in alumina feldspathoids were not formed (unpublished partial chemical analyses by R. Ramasamy of the host rocks show alkali:alumina ratios in wt. \% ranging from 0.75 in a zircon syenite and a thorite syenite to $1 \cdot 17$ in a syenite pegmatite). This facilitated the accumulation of the amphibole in the residual liquid, and it was subsequently injected into all the earlier rocks as both crystals and veins.

Acknowledgements. The authors wish to thank Messrs S. Ramanathan, G. Thimmi Chetty, and M. K. Lakshiminarayanan for their co-operation during the investigations.

Dept. of Geology, Presidency College S. Saravanan, M.Sc., Ph.D.
Madras- 5
R. Ramasamy, M.Sc.

REFERENCES

Heinrich (E. Wm.), 1956. Microscopic petrography, p. 56. McGraw-Hill. MCLachlan, (G. W.), 195I. Min. Mag. 29, 476.
[Manuscript received I8 May 1970]

MINERALOGICAL MAGAZINE, SEPTEMBER I97I, VOL. 38, PP. 377-379

Ferroan sahlite from the Eastern Ghats, Andhra Pradesh, India

The first discovery of metasomatic ferroan sahlite in the Eastern Ghats has been made at the contact of calc granulites with intrusive granite near Maruturu, 2 km north of Anakapalle (Long. $83^{\circ} \mathrm{I}^{\prime} 6^{\prime \prime} \mathrm{E}$; Lat. $17^{\circ} 44^{\prime} \mathrm{I} 8^{\prime \prime} \mathrm{N}$.) and Garividi (Long. $83^{\circ} 32^{\prime} 28^{\prime \prime} \mathrm{E}$.; Lat. $18^{\circ} 16^{\prime} 38^{\prime \prime} \mathrm{N}$.). Calc granulites are part of the khondalite suite (C) Copyright the Mineralogical Society.
of para-gneisses, which are often intruded by pink granites and then the sahlite in the calc granulite is converted into ferroan sahlite at the contact. A zone of ferroan sahlite and sphene extends for 6 inches to 2 feet on both sides of intrusive tongues of pink microcline granite in the calc granulites. Xenoliths of calc granulite striking roughly parallel to the walls of the granite have prominent ferroan sahlite and sphene development while the outer margin of the granite has scattered coarse-grained ferroan sahlite and sphene.

Table I. Chemical, optical, and X-ray analyses of clinopyroxenes (Anal. K.S.R.Rao)

	I	2	3	4	5
SiO_{2}	52.26	50.84	$48 \cdot 14$	47.9 I	47.04
TiO_{2}	0.18	0.12	0.35	0.3 I	0.35
$\mathrm{Al}_{2} \mathrm{O}_{3}$	1.72	2.19	5.4 I	5.2 I	6.68
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	1.02	I .58	4.25	3.27	3.1 I
FeO	5.74	8.93	6.54	12.44	12.46
MnO	0.25	0.37	0.56	0.4 I	0.58
MgO	14.94	12.07	1 I .07	7.86	7.89
CaO	23.03	22.49	23.42	22.04	2 I .86
$\mathrm{Na}_{2} \mathrm{O}$	0.35	0.46	0.14	0.35	0.22
$\mathrm{~K}_{2} \mathrm{O}$	0.12	0.21	0.09	0.02	0.08
$\mathrm{Cr}_{2} \mathrm{O}$	0.02	0.0 I	0.02	0.03	0.02
$\mathrm{H}_{2} \mathrm{O}+$	0.34	0.29	0.18	0.18	0.18
$\mathrm{H}_{2} \mathrm{O}$	0.08	0.16	0.09	0.08	0.12
Total	100.05	99.72	100.26	100.11	100.59

	I	2	3	4	5
Optical Properties					
$2 \mathrm{~V} y$	59°	60°	62°	$60^{\circ}-63^{\circ}$	65°
$\gamma:[001]$	$38^{\circ}-41^{\circ}$	44°	$43^{\circ}-48^{\circ}$	$42^{\circ}-48^{\circ}$	$48^{\circ}-51^{\circ}$
α	I. 687	1.691	$1 \cdot 703$	I-720	I.721
β	I 697	I. 698	1.718	I-728	1.730
γ	1.712	I.715	I'729	I 744	I•745
α	…	-	Light green	Green	Green
β	-	-	Light	Yellowis	Yellowish
			green	green	green
γ	-	-	Green	Bluish	Dark
				green	green
Cell Parameters					
a	9.747 A	9'751	$9 \cdot 749$	9*750	$9 \cdot 752$
b	$8 \cdot 945$ A	8.938	$8 \cdot 886$	$8 \cdot 904$	$8 \cdot 884$
c	$5 \cdot 260$ A	$5 \cdot 265$	$5 \cdot 283$	$5 \cdot 279$	$5 \cdot 289$
β	$74^{\circ} 10^{\prime}$	$74^{\circ} 03^{\prime}$	74°	$74^{\circ} \mathrm{OI}^{\prime}$	$73^{\circ} 55^{\prime}$
$a \sin \beta$	$9 \cdot 383$	$9 \cdot 374$	$9 \cdot 371$	9.371	$9 \cdot 369$

Si	$1 \cdot 945$	1.931	1.820	I. 846	I-806
Al ${ }^{\text {iv }}$	0.055	0.069	0.180	$0 \cdot 154$	- 194
$\mathrm{Al}^{\mathbf{v i}}$	$0 \cdot 026$	0.031	0.061	0.082	$0 \cdot 108$
Ti	$0 \cdot 004$	0.002	0.010	$0 \cdot 009$	-0io
$\mathrm{Fe}^{3}+$	$0 \cdot 029$	0.045	$0 \cdot 120$	$0 \cdot 097$	0.090
$\mathrm{Fe}^{2}+$	- 179	0.282	0.207	0.402	0.400
Mn	0.008	0.011	0.018	0.014	$0 \cdot 018$
Mg	0.828	0.686	0.620	0.451	0.451
Ca	0.918	0.913	0.949	0.909	0.898
Na	0.025	0.032	0.009	0.028	0.016
K	$0 \cdot 004$	0.009	$0 \cdot 004$	-	0.005
\boldsymbol{Z}	$2 \cdot 000$	$2 \cdot 000$	$2 \cdot 000$	$2 \cdot 000$	2.000
$W X Y$	$2 \cdot 021$	2.011	I-998	I•992	I.996
Ca At. \%	$46 \cdot 80$	$47 \cdot 10$	$49 \cdot 60$	$48 \cdot 50$	48-35
Mg At. \%	$42 \cdot 20$	35.40	32.40	24.10	24.27
Fe At. \%	I I 00	17.50	18.00	27.40	$27 \cdot 37$

1. Sahlite, Calc granulite, Maruturu
2. Sahlite, Calc granulite, Garividi
3. Sahlite, Calc granulite, 2 feet away from the granite contact, Maruturu
4. Ferroan sahlite, Granite-Calclgranulite contact, Garividi
5. Ferroan sahlite, in the outer Granite margin, Maruturu

Five pure pyroxenes have been analysed (table I); two are sahlites from calc granulites, two are ferroan sahlites from granite-calc-granulite contacts, and one sahlite is from calc granulite 2 feet away from a granite contact. The increase in refractive indices from sahlite to ferroan sahlite reflects the replacement of Mg by Fe^{2+} as is well known in the diopside-hedenbergite series (Deer et al., 1963). Although the cell parameters are not highly accurate because internal standards were not used, the results agree with Lewis's (1967) conclusions that b and $a \sin \beta$ decrease and c increases linearly as Si is replaced by $\mathrm{Al}^{\mathrm{iv}}$ in natural aluminous clinopyroxenes.

The ferroan sahlite has been formed by metasomatic recrystallization of the sahlite due to addition of iron, titanium, and aluminium from the granite magma, which probably crystallized at $700-750^{\circ} \mathrm{C}$ based on Winkler's (i965) results and the Q , $\mathrm{Or}, \mathrm{Ab}(40: 34: 26)$ values of the granite. The fact that pegmatite-calc-granulite contacts near Garividi have the assemblage epidote-actinolite-sphene suggests that the pyroxenes form under lower $\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}$ and higher temperatures than the hydrous assemblage mentioned.

Acknowledgements. The authors thank Prof. A. Sriramadas for his help and the senior author gratefully acknowledges financial assistance from the University Grants Commission, and the Council of Scientific and Industrial Research, New Delhi, India. Thanks are also due to Dr. G. S. Siddhu, of Hyderabad, for providing the X-ray data.

Department of Geology, Andhra University
A. T. RAO Waltair, India
Department of Geology, Utkal University K. S. R. Rao
Cuttack 3, India

REFERENCES

Deer (W. A.), Howie (R. A.), and Zussman (J.), 1963. Rock-forming minerals, 2, London (Longmans).
Lewis (F. J.), 1967. Amer. Min. 52, 42.
Winkler (H. G. F.), 1965. Petrogenesis of metamorphic rocks. (Springer-Verlag), New York.
[Manuscript received I September 1970; revised 14 October 1970]

MINERALOGICAL MAGAZINE, SEPTEMBER I97I, VOL. 38 , PP. 379-38i

Surface structures of Pamir quartz

The author has been concerned with the production of quartz from the Pamirs for some years, and has examined several thousand crystals (Vadilo, 1947). The only
 bounding facets of steps or horizontal striations on the m faces, often regarded as definite acute rhombohedra r_{a} and z_{a}, are rather to be considered vicinal facets, making no definite angle with m, but lying anywhere between m and r or z; the triangular growth pyramids typical of z and r faces are never observed on such vicinals.

Growth pyramids on r (fig. 2, a) and on z (fig. 2, b) have triangular outlines, the base being a triangle with curved sides, with the least curved side parallel to the edge $[\mathrm{rm}]$ or [$z m$]; for pyramids on r the base is a equilateral triangle, for those on z an isosceles one. Growth pyramids are often situated along cracks and grow over them (fig. 2, e). Some such pyramids are formed as the result of the attachment of small ($<\mathrm{I} \mathrm{mm}$) crystals to the large one; the small crystal converts to a growth pyramid. Pyramids overlapping a twin boundary present a combination of the typical forms seen on r and z faces (fig. 2, e). Elevated growth forms also occur consisting of numerous minute, closely-packed growth pyramids (fig. 2, f). Minute growth pyramids may also be

