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SUMMARY. A simple method has been developed for calculating the d-orbital energy levels of 
transition-metal ions in coordination polyhedra with both orthogonal and non-orthogonal distor- 
tions, using equations based on those derived by Ballhausen (I954). The input data are atomic co- 
ordinates, a standard value of the crystal field splitting parameter A at known metal-ligand distance, 
and the ratio of radial integrals BJB4, which is approximately constant for a given ion. The method 
can be applied to polyhedra containing different ligands. 

Application of the equations to the Mn 3+ (M3) site in piemontite and the Fe ~+ (M2) site in ortho- 
pyroxene gives calculated transition energies in good agreement with the observed band energies. 

The calculations permit definite assignment of the great majority of d-d absorption bands even in 
multi-site phases, and enable discrimination of crystal-field and charge-transfer bands in mineral 
spectra. They also throw light on the fine structures of both oxygen ~ metal and metal ~ metal 
charge-transfer bands, and allow the calculation of crystal-field stabilization enthalpy and electronic 
entropy. The latter is a previously neglected energy term that contributes significantly to the energetics 
of reactions within and between phases containing transition-metal ions. 

THE dominan t  features o f  the spectra  o f  silicate minerals  in the near  ul t ra-violet ,  
visible, and  near  infrared are de termined main ly  by  the presence o f  f irst-row t rans i t ion-  
metal  ions, the most  abundan t  species being Fe  2+ and  Fe  a+. These ions cont r ibu te  

three main  features to  the spectra.  
Firs t ,  the oxygen -+  metal  charge- t ransfer  process gives very s t rong abso rp t ion  

bands  in the near-ul tra-violet ,  the low-energy tails of  which are responsible  for  the 
backg round  absorp t ion  in the visible and  infrared.  These bands  occur  near  5"5 eV 
(Fe  3+) and  7"0 eV (Fe2+), and  have osci l la tor  s t r e n g t h s f ~  o.I  to 0"3. 

Second, the m e t a l - +  metal  charge- t ransfer  absorp t ion  appears  as sharp bands ,  
usual ly in the visible, super imposed  on the backg round  due to the O - +  M absorp t ion .  
These arise f rom the photon-ass is ted  t ransfer  o f  electrons between meta l  ions in 
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adjacent coordination polyhedra, e.g. Fe z+ ~ Fe a+ (Robbins and Strens, ~968, I972; 
Faye et aL, I968), and Fe 2+ -+ Ti 4+ in kyanite (G. Smith, Newcastle University, 
unpublished). These bands have oscillator strengths o f f ~  o.ooI, with band widths 
of 3000 to 5oo0 cm -a in most cases. 

Finally, there are bands attributed to transitions between the d-orbital energy levels 
of transition-metal ions occupying the (usually) distorted coordination polyhedra in 
minerals. These again appear as relatively narrow (width 4oo to 2ooo cm -1) bands 
superimposed on the background of O ~ M absorption. Oscillator strengths range 
fromf, .~ o.ooI for spin- and symmetry-allowed bands, t o f ~  xo -7 for spin-forbidden, 
symmetry-forbidden bands. Most of the available spectral data for d-d bands have 
been summarized by Burns (I97o). 

Although the present work deals only with the calculation of d-orbital energy 
levels, it has applications to all the types of spectra mentioned above since the fine 
structure of the O ~ M and M ~ M charge-transfer spectra is largely determined by 
the d-orbital splittings of the acceptor ions. The method of calculation is a further 
development of methods outlined by Strens 0968) and Strens and Wood 0969). 
Applications to ferromagnesian silicates and to minerals containing ions other than 
Fe ~+ will be dealt with elsewhere (Wood and Strens, in preparation; Wood, r97I, 
and in press). 

Outline of the problem 

The relative energies of the five d-orbitals in regular octahedral, tetrahedral, and 
cubic eightfold coordination are shown in fig. L The electrostatic repulsion between 
the d-electrons and the negatively charged ligands causes an increase of nze/R in the 
energy of the d-orbitals, where n is the number of ligands, z their charge, and R is the 
metal-ligand distance. In all three types of site, the d-orbitals are split into two groups, 
t2g or d E and eg or d~. Relative to the baricentre, the t2g orbitals are stabilized by 2A/5, 
and the eg orbitals are destabilized by 3A/5 in octahedral sites. The stabilizations have 
the opposite sign in tetrahedral and cubic sites. 

As a site is distorted from regular symmetry, further splitting of the d-orbitals 
occurs, until in orthorhombic, monoclinic, or triclinic point-groups all five energy 
levels are non-degenerate. Each distorted site in a multi-site phase can then contribute 
up to four spin-allowed d-d transitions in the case of d 4 or d 6 ions, e.g. Mn 3+ and 
Fe 2+. The observed spectra of silicates containing transition-metal ions may therefore 
become very complex, and d-d absorption bands cannot be assigned unequivocally 
by the purely empirical methods in common use. Indeed, some authors have been 
unable to distinguish between d-d and charge-transfer bands. 

An example of such differences in assignment is provided by the band at about 
50oo cm 1 in pyroxenes, which was originally attributed by White and Keester (I966) 
to the ~E ~ 5T 2 transition of tetrahedrally coordinated Fe 2+, and later reassigned by 
Bancroft and Burns 0967) to a transition between the non-degenerate 't ' levels of 
Fe 2+ in the distorted octahedral M2 site. Our calculations confirm the latter assign- 
ment, but differ in detail (notably the assignment of electronic axes) from the earlier 
work. 
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A second area of confusion lies in the discrimination of d - d  and charge-transfer 
bands, particularly in the spectra of tourmaline, cordierite, kyanite, and corundum. 
Our calculations, taken with recent work by G. Smith, enable definite assignments to 
be made for these minerals. 
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FIG. I. Calculated d-orbital  energy levels relative to the  baricentre in a selection o f  regular  and  
distorted coordinat ion polyhedra :  regular  t e t rahedron  (a); distorted te t rahedron  in stauroli te 
(b); eightfold cubic coordinat ion (e); eightfold site in pyrope  (d); regular  oc tahedron  (e); 
te tragonally distorted oc tahedron  with Rz = R v = o'97Rz, and  A~ = A u = io 500 ClTI 1 and  
Az = 9ooo cm -1 ( f ) ;  or thorhombica l ly  distorted oc tahedron  with Rx: R v: Rz = o'98 : i : I .o2, 
and  A x ~ i I  ooo, A v = [o ooo and  A~ ~ 9ooo cm -1 (g); and  (h) the  oc tahedron  about  the  
M ( z )  posi t ion in or thopyroxene,  showing also the  allowed and  forbidden (dashed) optical  

t ransi t ions of  Fe z+ in this  site. 

M e t h o d  o f  calculation 

Ballhausen (I954) used a point-charge approximation to calculate d-orbital energy 
levels for fields of different symmetry, and applied his findings to the interpretation of 
the spectra of cupric compounds, in which Cu ~+ normally occupies strongly distorted 
octahedra. On rearranging Ballhausen's equations an expression of the form 

Energy  = nx(Bo+Ca B 2 + C 2 B ~ ) + n  u ... 

is obtained, containing three independent energy terms, one for each of the three 
Cartesian axes (x, y, z) of the point group. Here, nx is the number of ligands on the 
x axis (not necessarily an integer), B0, B~ and B4 are the appropriate radial integrals, 
and Cx, C~ are constants. The energies of all five d-orbitals as a function of these 
parameters are given in Table I. In a regular octahedron, n= = n  u ---- n e -~ z,  and the 
expressions of Table I reduce to the familiar result of one doublet state and one 
triplet with energies Eg = 6Bo+B~,  :T2g = 6Bo--2B4/3.  The B0 terms simply give the 
increase in energy of the set as a whole due to the spherical potential of the ligands, 
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and they can therefore be dropped from arguments concerned only with the d-d  
splittings. Hence, A = 5B~/3 or B~ = o-6A. The magnitude of B2 is not so easily 
determined, but Ballhausen's expressions for the radial integrals give the ratio 
B2/B~ -= 2x2/75 . Here x ~- ZR/3 ,  where R is the metal-ligand distance in atomic units, 

TABLE I. Energies o f  d orbitals in terms o f  radial integrals; 
adapted f rom Ballhausen (i954) 

nx,u, z = no. o f  ligands on x, y, z axes 

B 1 a 1 a ~-B •  "~ z ~ n~( o--vB~+~B4)+nu(Bo--~B~+-28-B4)+nz(Bo+ 7 2 . v  4~ 
x2--y  ~n B aB ~gB n 1 B ~9 x( o+~ ~+~g~ 4)+ u(Bo+v 2+~B~)+nz(Bo--~B24-2~rB4) 

n B ~B 4 n ~B 4 2 t xy  x( 0+v ~--~-fB4)+ u(Bo+-r 2--~-fB4)+nz(Bo--~-B~+~B4) 
x z  nx(Bo + {-B2-- ~B4)  + nv(Bo-- {B2 + ~i-B4) + nz(Bo + r -- ~B~)  
y~ .~(Bo--*B~+ ~B,)+.~(Bo+r247162 

Expressions for  d-orbital energies in an orthogonally distorted octahedron when 
Be/B4 = 2. Note that n x = n u = n z = 2. For tetrahedral and cubic eightfoM sites 

multiply all energies by minus two-thirds 

z z = --o.214Ax --O'214Ay @I'028Az 
x ~ - - y 2 =  +0.6r4Ax @0"614Ay --0.628Az 

xy  = +O'II4AX +O ' I I4Ay  --O'628AZ 
x z =  @O'II4Ax --0"628Ay +O'II4AZ 
yz  = --0"628Ax @O'I I4Ay + O ' I I 4 A z  

and Z is the effective nuclear charge on the cation, which may be calculated approxi- 
mately by Slater's 0930) method. However, the B2/B4 ratio is best regarded as an 
empirical parameter to be fitted to the spectrum (Basolo and Pearson, I967). Calcu- 
lated values of  this ratio for some of the more important ions range from I-6 to 2.7, 
with Fe z+ occupying an intermediate position at 2.0. Knowing B~ and the B2/B4 ratio, 
the expression for the energy becomes 

E = ~• B2/B4+ Cd +-~/Xy .... 

where n x A 0 has been replaced by A .  The energy levels of  ions in orthogonally dis- 
torted sites can now be calculated, provided the dependence of A on metal-ligand 
distance is known. I f  the surrounding ligands are approximated to point charges, A 
varies as R -5, whilst a point dipole approximation yields A oc R-6. Drickamer (I965) 
has determined the change in A with R for transition metal ions in oxides, and has 
shown that the R -5 dependence holds over the experimentally accessible ranges of R, 
and we have therefore assumed inverse fifth-power dependence of A on R. 

On this assumption, and taking B2/B 4 = 2.o, the effect of a tetragonal distortion 
of an octahedron on the d-orbital energy levels is shown in fig. 2. Movement of  the 
ligands on the z-axis away from the central ion leaves n z unchanged, but reduces A z 
as (Ro/Rz) 5, stabilizing dz, relative to d~,_u2, and dxz,u ~ relative to dxu. Compression 
along the z-axis (e.g. Mn a+ in piemontite) has the opposite effect, stabilizing dx,_u2 
and d~u. 
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A purely orthogonal distortion model is a reasonable approximation for a number 
of octahedral sites in silicates, e.g. olivine M 0 ) ,  hypersthene M(I),  and piemontite 
M(3), but there are many in which large non-orthogonal components are present. The 
key to the solution of  this problem 
lies in the calculation of n x, n u and nz, 
since these obviously vary as ions are 
moved off the orthogonal axes. Since 
n x + n u - k n  ~ must remain constant and 
equal to the coordination number, and 
(at constant R) the interaction energy 
nze/R must also be conserved, we find 
that the contributions of  the ions to A x 
must be weighted according to cos20i, 
where 0 i is the angle between the ith 
metal-ligand vector, and the x-axis. 
The full expression for /x x then be- 
comes: 

A x = ~ Ao(Ro/R,~) 5 coseOi . 
i 

It  is therefore necessary to assume some 
standard value of A o at a known R for 

Z 
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Ft~. 2. Calculated d-orbital energy levels relative 
to the baricentre (in units of Ao) in tetragonally 
distorted octahedra, as a function of  2Rz/ (Rx+Ru) ,  
withB~/B~ = 2. Here, z 2 = zz, and x 2 - - y  2 = xxyy .  

the ion under consideration. In particular, the use of  A 0 = 975 ~ cm -1 at R0 = 2.135 .h, 
with B2/B4 = 2.o has enabled accurate calculations to be made of the energies of  the 
great majority of  absorption bands in Fe 2+ silicates. 

TABLE II .  Calculated d-orbital energy levels in piemontite M(3)  and hypersthene 
M(2)  sites in cm -1 relative to baricentre 

Piemonti te  M(3  ) Hypersthene M(2)  

z 2 I4075 X2--Y 2 (B1) 612I 
x~- -y  2 2ooi z ~ (A1) 4405 
y,z --3420 yz  (A2) --  13oi 
x z  -- 4175 x y  (A1) -- 2997 
x y  -- 8475 x z  (B2) -- 623 I 
Ao i28oo cm -1 Ao 9750 cm -x 
R0 2'06/~ R0 2"I35/~ 
B~/B 4 I "60 B2/B4 2. OO 
z O(8)-M(3)-O(4) z [OtO] 
y [0IO] y M(2)-O(5) 
Symmetry Cs Symmetry (71 

Atomic coordinates were taken f rom Ghose (I965) and Dollase (I969). 

Applications 

As illustrations of  the method it is appropriate to take one site with a strong 
tetragonal distortion, and one with a more complex non-orthogonal distortion. 
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The Mn  3+ (M3) site in piemontite is shown in fig. 3, with bond  lengths according to 
Dollase (1969). The site has formal symmetry C~, with the mirror plane normal  to b, 
but  the principal distortion is the strong tetragonal compression along the o(8)-M(3)-  
0(4)  axis. The unique direction normal  to the plane of  symmetry would normally be 
assigned as the electronic z axis, but it was found necessary to place z along the pseudo- 
tetrad axis of  compression, with y = b in order to obtain agreement between cal- 
culated and observed energies. 

~ Z  ~-= Z 

' L 

FIGS. 3 and 4: FIG. 3 (left). The octahedron about the M(3) position in piemontite, showing the 
orientation of electronic axes used in the calculation. Dollase (1969) found the following metal (M)to 
oxygen distances in a piemontite with ca. (Mn0.76Fe007A10.17) in the M(3) site: 2 • M-O(I) = 2'274, 
2 • M-O(2) = z.o3t , M~O(4) = 1"9oo, M-O(8) = 1.86I ~. FIG. 4 (right). The octahedron about 
the M(2) position in hypersthene, showing the orientation of electronic axes used in the calculation. 
Ghose (1965) found ~r O(i) = 2"14, M-O(2) = 2"o7, M-O(3) = 2"52, M-O(4) = 2.I8, M-O(5 ) 

= 2.o4, and M-O(6) = 2'41/~. 

The calculated BJB~ ratio is 1-62, and a value o f  I-6 was found to give an excellent 
fit to the spectrum with A0 ~ I2 800 cm -1 at R0 = 2.o6 ,~. The calculated and observed 
band positions are compared  in Table III ,  using the spectral data of  Burns and Strens 
(I967). 

In  C s symmetry the I2 ooo cm -1 transition is allowed only in y(/3) polarization, which 
is the observed orientation o f  maximum intensity. Band 2 should be present in all 
spectra, with band I o~ and 7 polarized. Band I is in fact c~ and/3 polarized, implying 
some relaxation o f  the selection rules, possibly involving the mechanism of  substitu- 
tional intensification discussed by Robbins and Strens (1972). Site symmetries other 
than Cs were tried, but  failed to give better agreement between observed and predicted 
polarizations. 

The spectrum of  Fe ~+ in bronzite was determined by Bancroft  and Burns (I967), and 
has two main bands near 5ooo and I I  ooo cm 1. A third band at 31oo cm -1 was 
located by White and Keester (I966), but  its polarization was not  determined. Since 
iron is strongly concentrated in the M(2) position o f  orthopyroxene,  and the M(I)  
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position is centrosymmetric (and so expected to contribute only weak vibronic bands 
to the spectrum), these bands are assigned to Fe z+ in M(2). The highly distorted M(2) 
site is shown in fig. 4, using distances f rom Ghose (I965). The formal symmetry is C~, 
but there is C~, pseudo-symmetry with a diad along b = c~. This direction was therefore 
taken as electronic z, with y along the short metal -oxygen distance M(2)-O(5). The 
calculated energy levels on the basis o f  these assignments are given in Table II. The 
B2/B 4 ratio was set at 2.o (I"98 calculated), with A o = 9750 cm -~ at Ro = 2"I35 •. 

T A13 L E I I I. Comparison o f  observed and calculated band parameters 

Piemontite: 

Band Observed Calculated 

c~ 13 7 polarization Veale assignment polarization 

I 22 0OO 22  200  - -  fl ~ c~ 2 2 5 5 0  22 < x y  % y 

2 18700 17800 I825o 7 ~- 13 ~> ~ { I825017495 Z~+-XZlz 2 +- yzJ % 13' 7 

3 12580 I 1900 - -  /3 ~ ~ I 2074 Z 2 +- X 2-y~ /3 

Hypersthene : 

Optic orientation:t3=b, a /k e = 5  ~ , 7 / k a =  3 ~ . 

Band Observed Calculated 

c~ fi 7 polarization Vc~le assignment polarization 

. . . .  I 2  352  XZ'-~ x 2 - - y  2 f o r b i d d e n  

I 1 0 7 9 0  I I  150 I I  200  ( x ~  f l >  7 1 0 6 3 6  x z - + z  2 o~ 

2 - -  5 3 8 0  5 3 0 0  fl > 7 ~ c~ 4 9 3 0  x z - - ~  y z  ~fl, �88 
3 (3IOO) - -  - -  undetermined 3234 xz '~  xy o~ 

Optic orientation: c~ = b,/3 = a, 7 = c. 

The selection rules and polarization dependence o f  transitions have been discussed 
by White and Keester 0967),  but  our interpretation differs f rom theirs in the assign- 
ment o f  axes. Using the descent of  symmetry tables (Wilson, Decius, and Cross, 1955) 
the five d-orbitals t ransform as the following states: 

z 2 = A 1 ;  x~- -y  2 = B 1 ;  x y = A a ;  y z = A 2 ;  x z = B 2 .  

The ground state is thus B2, and the B2 to A1 (I I ooo cm -a) transition is allowed along 
B2 = z = b = c~, which is the observed direction o f  maximum intensity. The B2 to A2 
(49oo cm -a) transition is allowed along x ,-~ ~a+�88 with the B~ to A1 (3Ioo cm -1) 
transition polarized along z = ~. The latter has not  yet been observed in polarized 
light, but  the former has high intensity along a = / 3  and moderate  intensity along 
e = 7, in agreement with prediction. The high energy (B2 to B1) transition (not 
observed) is forbidden in all three polarizations in C2~ symmetry. 
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Thermodynamic properties 

The quality usually called the 'crystal field stabilization energy' is in fact an enthalpy, 
denoted here by Her. In the general case Hcf ---- Z E i n i, where E i is the energy of the 

ith orbital relative to the baricentre, and n i is the number of  electrons in that orbital. 
For high-spin Fe z+ at low temperatures, the 'sixth' electron is localized in the ground 
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FIG. 5. The calculated electronic entropy, in units 
of the gas constant R, attributable to Fe ~+ in the 

MO ) and M(2) sites of hypersthene. 

d-orbital splittings, and an undistorted site 

state, with energy %, and Hcf ~ c0, 
since the contribution of the first five 
electrons sums to zero. Both E i and n i 
are functions of temperature, and //of 
therefore varies with temperature. 

At temperatures such that k T  is com- 
parable with the splittings of the 
lowest-lying orbitals, the electron dis- 
tribution becomes partially disordered, 
contributing an electronic entropy: 

S d = - -R  ~ n i In ni+(I- -nOln 0 - n  0. 
i 

For high-spin Fe 2+ compounds, only 
the 'sixth' d-electron need be considered 
and the maximum entropy contribution 
at geologically reasonable temperatures 
is 2.8 to 3"8 e.u. At Iooo ~ the 
T(S1--S2) term can contribute as much 
as 3 kcal/mole to exchange energies 
between a distorted site with large 

with small splittings (fig. 5)- 

Discussion and conclusions 

The strong distortions of the piemontite M(3) and orthopyroxene M(z) sites provide 
a severe test of the method of calculating d-orbital energy levels, and the agreement 
between observed and calculated values is most satisfactory. Even the discrepancies 
that remain are attributable in part to differences between the average ligand-metal 
distances as determined by X-ray methods and the distances in those sites that are 
occupied by Mn 3+ and Fe 2+ ions. Indeed, the comparison of observed and calculated 
band energies can be used to investigate the relaxation of  mineral structures around 
transition metal ions replacing Mg ~+ in cordierite and A1 a+ in epidotes (Wood, I97I). 

Differences of several hundred wavenumbers occur between calculated and observed 
band energies for a number of minerals containing Fe z+ in centrosymmetrie sites, due 
to the effects of vibronic coupling: rob ~ = %l§ The effect is particularly impor- 
tant in pyrope, and our calculated Hof for this mineral is likely to be more accurate 
than values derived from the spectra. 

Experience gained in applying the calculations to a wide range of ions and co- 
ordination numbers (Wood, I97 I, I972) suggests that the point-charge model holds 



CRYSTAL F I E L D  S P L I T T I N G  917 

well so long as the formal charge per bond  (i.e. ionic charge/coordinat ion number)  
does not  greatly exceed one-half. The only case in which the point-charge calculations 
failed was that  o f  the spinel Fe~GeO4, a highly symmetrical structure in which polariza- 
t ion effects are important.  N o  evidence was found  for significant polarization (or 
next-nearest neighbour) effects in any silicate structure. Neither was there any indica- 
t ion that the state o f  chemical combinat ion o f  the oxygen ions in these structures 
mattered, for the same values o f  Ao and R0 were used for oxygen ions in hydroxyl  
groups and water molecules, and for  both  bridging and non-bridging ions in the 
complex silicate anions present in pyroxenes and amphiboles. 

The application o f  the calculations to phase-equilibrium and thermodynamic  
properties o f  minerals has been discussed by Strens (I969), W o o d  (I97I) ,  and W o o d  
and Strens 0969,  I97 0 .  
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