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Elastic anisotropy in minerals 
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SUMMAgY. Silicate minerals show several correlations between structure type and elastic constants. 
Stiffness coefficients are generally larger in the direction of Si-O bonding. A simple mechanical 
analogy in which atomic bonds are simulated by springs connected in series and parallel is used to 
estimate the size and anisotropy of the elastic moduli and their pressure derivatives. 

S T R U C T U R E -  I' R O P E R T Y relationships are o f  considerable interest to mineralogists 
when the concepts are of general applicability and are not overly complex. The 
atomistic explanation of optical birefringence in minerals (Bragg, I924) is a good 
example. Regarding mechanical properties, most mineralogy texts relate hardness, 
cleavage, and plasticity to crystal structure, but few discuss elasticity despite its 
importance in geophysics. The elastic constants of minerals are important in rock 
mechanics and in seismic-wave velocities. 

From previous work it appears that packing density is the primary variable affecting 
the elastic moduli of oxide compounds. Birch (I961a, I96Ib) showed that most com- 
mon minerals have about the same mean atomic weight (molecular weight divided by 
the number of atoms in the chemical formula), and that longitudinal sound velocity 
is roughly proportional to density. Shear velocities also increase with rock density 
(Simmons, I964). Anderson and Nafe (I965) plotted bulk modulus (reciprocal volume 
compressibility) against volume per ion pair, demonstrating that most oxide data 
follow the same relation. Bulk modulus is inversely proportional to volume, regardless 
of whether the volume change is caused by pressure, compositional variation, tempera- 
ture, porosity, or phase changes. As might be expected, bulk modulus increases with 
density because short-range repulsive forces make it increasingly difficult to compress 
the solid as the atoms move closer together. 

Structure-stiffness correlation. All solids change shape under forces. Under small 
stress, the strain e is related to the stress ~ by Hooke's law, (~) = (c)(e). The elastic 
stiffness coefficients (c) constitute a fourth-rank tensor in which the number of inde- 
pendent coefficients depends on symmetry (Nye, I957). In contracted matrix notation 
~ = % Ej where i, j = I, 2, 3 refer to longitudinal stresses and strains along axes 
Xa, )(2, X~, respectively. For shearing motions about each of the axes, i, j = 4, 5, 6. 
The discussion that follows will be concerned with the relative values of c11, c22, and 
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czz, the coefficients relating change in length along a principal direction to a parallel 
component of stress. 

The stiffness coefficients for silicate minerals presented in table I show a correlation 
between elastic anisotropy and structure type. All silicates contain (SiO4) tetrahedra 
and, depending on how the tetrahedra are linked together, can be classified as frame- 
work, layer, chain, or ring silicates. 

TABLE I. Longitudinal stiffness constants expressed in megabars (Hearmon, 1966) 

Framework silicates 

c~-quartz SiO2 
s i l ica  g lass  SiO~ 

Single chain silicates (py roxenes )  

aeg i r ine  NaFeSi~O6 
aug i t e  (Ca,  Mg,  Fe)SiOz 
d iops ide  CaMgSizO6 

Doable chain silicates ( a m p h i b o l e s )  

h o r n b l e n d e  

Ring silicates 

bery l  
t o u r m a l i n e  

C l l  = C22 ~ 0"9, e33 : I ' I  

C l l  = C22 ~ C33 : 0 " 8  

C l l  = 1"9 ,  c 2 2 - -  1"8 ,  Czz = 2 " 3  

C l l  = 1 ' 8 ,  C22 = I ' 5 ,  czz  = 2 " 2  

e l l  ~ 2 " 0 ,  C22 = 1 ' 8 ,  C33 = 2 " 4  

(Ca,Na,K)~_3(Mg,Fe,A1)5(Si,A1)8022(OH)2 e l l  = I ' 2 ,  C22 - -  1 ' 8 ,  C33 = 2 ' 0  

BeaA12Si6OI8 ca~ = c ~  = 3"1, czz = 2 '8 
(Na,Ca)(Li ,Mg,A1)3(A1,Fe,Mn)6(OH)~(BO3)aSi6018 

e l l  = C22 = 2 ' 7 ,  czz = 1"6  

Layer silicates 

bio t i t e  K(Mg,Fe)3(AISisO10)(OH)~ c l l  - -  c22 = 1'9, c~3 = 0 '5  
m u s c o v i t e  KAI~(AISi301o)(OH)2 c~i - -  c2~ = 1.8, c33 = 0.6 
p h l o g o p i t e  KMg3(A1Si30~o)(OH)2 e ~  --  c~2 = I '8 ,  c33 = 0 '5 

In framework silicates such as quartz and silica glass, the tetrahedra form three- 
dimensional networks. Since the bonding is nearly isotropic, there is no cleavage and 
little anisotropy in hardness or elasticity. Compare the longitudinal elastic moduli 
given in table I. When corrected for density (p = 2"65 g cm  -3 for quartz and 2.2 g cm 3 
for silica glass) the stiffness constants are nearly identical for the two forms of SiO2, 
substantiating the relation between bulk modulus and volume (Anderson and Nafe, 

I965). 
The influence of crystal structure becomes more obvious in the chain silicates. 

Pyroxenes contain SiOz single chains, and amphiboles Si4Oll double chains as shown 
in fig. I. Elastic coefficients in table I are referred to the measurement directions 
denoted by arrows in fig. I. Bonding is stronger along the chain direction giving rise 
to pronounced cleavage. We also expect the crystal to be stiffer in this direction, 
resulting in larger moduli. Experiment confirms this suggestion; the stiffness parallel 
to the chain (cz3) is the largest in pyroxenes and amphiboles. We also note that c~2 has 
increased considerably in hornblende, possibly because of the increase of chain width 
in this direction. 

Beryl and tourmaline, two ring silicates, show a similar correlation between stiffness 
and structure. Both contain Si6018 rings as illustrated schematically in fig. I. We 
expect strong bonding and greater stiffness in the plane of the ring, hence cza should 
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be smaller than c11 and c22 as observed. Beryl is not  very anisotropic because o f  the 
strong Be-O and A1-O bonds connecting the rings. 

When  Si~OI8 rings adjoin one another, the tetrahedral layer found in micas is 
formed. The cleavage and stiffness anisotropy become very obvious in layer silicates, 
where clt and c22 are three times larger than ca3. This is the maximum elastic anisotropy 
observed, for reasons that are explained later. 
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FIGS. I and 2: FIG. I (left). Arrangements of SiO~ tetrahedra in silicates. (a) Single chain silicates. 
(b) Double chain silicates. (c) Ring silicates. (d) Layer silicates. FIG. 2 (right). Series and parallel 
connections of springs used to represent atomic bonds. Strong bonds have large force constants K, 

while weak bonds are easily stretched and have smaller constants k. 

Mechanical analogue. In the lattice theory of  elastic coefficients, stiffness coefficients 
are related to atomic force constants by determining the energy associated with various 
strain components.  The calculation is cumbersome for a monatomic simple cubic 
lattice (Kittel, I953), and would be overwhelming for most  mineral structures. To 
avoid mathematical  complexity and gain further physical insight regarding the causes 
o f  elastic anisotropy, we make use of  a simple mechanical system. 

The analogy used to describe elastic anisotropy is one in which two mechanical 
springs represent atomic bonds with force constants k and K. Tables of  force constants 
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(Wilson, Decius, and Cross, I955) derived from infrared vibrational spectra show that 
typical values are within an order of  magnitude of Io 5 dynes/cm (I rod/A). In general 
the strongest bonds have the largest force constants because deep potential wells have 
larger second derivatives when well shapes are similar. Thus, for example, it is found 
that the stretching-force constants for C- -C ,  C = C ,  and C ~ C  are about 5, m, and 
~6 md/A, respectively. 

To explain the elastic properties of solids containing both strong and weak bonds, 
consider the spring systems illustrated in fig. 2. When strong and weak springs are 
connected in series, most of the elastic energy is stored in the weak springs, while in 
the parallel connection the strong spring contains most of  the energy. Let K and k 
be the force constants of  two bonds arranged in series and parallel positions, as shown. 
This is a schematic representation of the bonding in mica. In muscovite Si-O and 
K - O  bonds are in series for tensile stresses applied perpendicular to the sheet and in 
parallel when the applied forces lie in the plane. In pyroxenes, the parallel connection 
applies to measurements along the silicate chains, and series connections to the two 
perpendicular directions. 

Analysing the series arrangement for an applied tensile force F gives 

F = erA s = n s K U K + n  s k u  k = c s A s us~Is, 

where ~ is the stress acting on a surface of cross sectional area A s containing n s chains, 
us / l  s is the resulting strain in the series (s) connection whose overall stiffness is c s. 
u K and u k are the displacements of  the springs with force constants K and k. An 
identical force applied to the parallel arrangement gives an analogous expression, 
F = ~Aj)  = np  K U K - r n  v k u  k = c v AD u v / l  v. 

For the series connection both springs experience the same force so that their 
restoring forces are equal, u K K = u k k .  The total displacement u s = U k §  giving 
ul~ - -  u s / O  + k / K )  a n d  uK = us / ( I  + K / k ) ,  and 

n s l s [  2 k K  I 
= ( i )  

In solving the parallel chain system, it is obvious that the displacements of the different 
springs are equal and that uv = 2u  k = 2u  K .  Substitution in the force equation gives 
the elastic constant 

,o,o - 

Note that e s and ep are unequal, even when all the springs are identical (k = K). 
The elastic coefficients depend on bond lengths through l and on the number of  chains 
per unit area in different directions. 

To determine the effects of strong and weak bonding on the elastic constants, 
assume that the geometric factors are about equal so that np l p / A p  = n s l s /A  s, giving 
the ratio Cs/C p = 4 k K / ( k §  2. In fig. 3, the quantity Cs/C p is plotted as a function of 
K / k  to illustrate the effects of mixed bonding. When K / k  = I, all bonds have the same 
force constant, and the elastic constants are of course the same for series and parallel 
connection, so that cs /c  p = I. At the other extreme e J c p  --+ o as K / k  --~ oe, but the 
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approach  to zero is very slow. For  
cs = 0.3%. Since force constants for  
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FIG. 3. Stiffness anisotropy for series and 
parallel connections plotted as a function 
of spring constant ratio K/k. The series 
connection is far more pliant when K >> k. 
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K/k  --  2, c s = o'9c 9 and even for K/k  = IO, 
various chemical bonds  are all within an order 
o f  magnitude of  one another, the expected 

' maximum elastic anisotropy is about  3 : I  as 
observed in muscovite (table I). In  all cases 
c9 > c s as observed experimentally. 

I t  would be useful to predict the magnitude 
o f  the observed stiffness coefficients (table I) 
as well as their anisotropy. For  chains identi- 
cal in size, number,  and force constants, equa- 

" ~  tions (I) and (2) reduce to 

n/k (3) Cp : C s = 

n, l, and A can be evaluated f rom the crystal 
structure, but  k cannot.  Typical values for k are 
o-I to I-o millidynes/A for bending force con- 
stants and I - IO md/A for stretching constants. 

Both types of  deformation come into play in minerals. When  an SiO4 tetrahedron is 
stressed, for  instance, both  stretching and bending will take place. Si-O force con- 
stants (Matossi, 1949) are fairly typical with stretching constants 4 to 5 md/A and 
bending constants o.6 to o. 9 md/A,  while those involving A1 are Io to 2o % smaller 
(Hidalgo and Serratosa, I956). A careful analysis would be required to determine the 
correct force constant to use in (3), but  in any case all the atomic force constants have 
not  been determined by spectroscopic data. When an average value k ~ I md/A is 
substituted in (3), elastic stiffness coefficients o f  the right magnitude are obtained. 
Taking l ~ 3 •, n/A ~ I/l  2 ~ O'I /~-2 gives c ~ 3 •  12 dynes/cm 2 = 3 megabars, 
comparable  to the experimental values (table I). 

Pressure dependence o f  the elastic stifJness 

The pressure derivatives of  the elastic coefficients of  minerals determine changes in 
seismic wave velocities deep within the earth, and are strong indicators o f  the onset 
o f  phase transformation.  Elastic stiffness coefficients and their initial pressure deriva- 
tives for four minerals are listed in table II. 

Using the spring model just described, three observations are to be rationalized: 
The pressure derivatives are all about  one to ten megabar /megabar  (dimensionless). 
Large stiffnesses usually show greater pressure derivatives than small ones: if cll > c~2, 
then c~c~/oP > ~c22/~P. Pressure derivatives of  the stiffnesses are positive in dense- 
packed structures but in open structures are occasionally negative. Quartz and beryl 
each have one negative derivative but the close-packed corundum and forsterite struc- 
tures show none. 

To estimate the pressure dependence o f  the elastic stiffness we again make the 
approximation that n/A ~ I/l 2, then c -= k/1, and 

•  = (I/1)(Ak/zXP)--(k/Yg(• 



E L A S T I C  A N I S O T R O P Y  1N M I N E R A L S  83 

Assuming an isotropic solid, AP ,-~ (Al)(c/l) so that 

Ac I Ak k 
A P  - c Al Ic" (4) 

A rough value for Ak/A/can be obtained by examining how k varies with interatomic 
distance. Short strong bonds have larger stiffnesses than long bonds. The bond stiffness 

T A S LE I I. Comparison of elastic st(ffnesses and their initialpressure derivatives for four 
minerals. Adiabatic stiffnesses e~i are e.vpressed in megabars, and the pressure derivatives 

~:c~/~:P are dimensionless 

Beryl Quartz Corundum Forsterite 
Yoon, 197t McSkimin, Gieske and Graham and 

Andreatch and Barsch Barsch, 1969 
Thurston,  1968 
1965 

Ocij i:?cij g~cij ~.:cij 

22 3"09 4"5 

33 2"83 3"4 

54~5} 0 . 6 6 - - 0 . 2  

66 0"9o o'3 
12 ] "29 3"9 

I3} 1'I9 3"3 
23 
14 - -  __ 

0"87 3"3 4"98 6.2 [3"29 8"3 
I 2-Ol 5"9 

1-o6 lO.8 5'02 5'0 2"36 6.2 
/o.67 2-I 

0"58 2"7 I'47 2.2 (0.81 I. 7 

0.40 --  2. 7 1.68 1'5 o.8I 2"3 
o'07 8"7 I "63 3"3 0"07 4'3 

to 'o7 4.2 
o.12 6.0 I'17 3"7 to 'o7 3"5 

-0.18 I. 9 --0.23 o'1 - -  - -  

o/ larger than that for A1-O, and the bond length is about IO % for Si-O is about IO ,o 
shorter. Therefore Ak/Al  is roughly I md/A 2. Substituting this value in (4) along with 
c ,  ~ 3 • Io12 dyne/cm2, k --  ~ md/A and / = 3 A gives Ac/AP ,,~ a (dimensionless), 
the right order of magnitude. 

To explain the second observation consider the anisotropic structure in fig. 4a. The 
structure contains tightly bonded atoms in the 3(1 direction and very loose bonding 
along )(2. From arguments previously presented c11 > c22. Now consider their pressure 
derivatives. From eq. (3) the change in stiffness with pressure is related to the change 
in the number of chains per unit area n/A, their repeat distance l, and bond stiffness k: 

Ae lk A(n/A) nk Al nl Ak 
~xP = - S ~ -  + ~ ~ -+ A Ap (5) 

Under pressure the structure will compress mainly along X2 because of the weak 
bonding in that direction, giving the exaggerated deformation in fig. 4b. 

For the )(1 direction there will be little change in Ii and k~ so that 

(AeH/AP) ~ It ka A(n/A)/AP. 

The number of chains per unit area increases rapidly with pressure because of the big 
reduction in 12, decreasing A and increasing n/A. Therefore c~ increases rapidly with 
pressure. 
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For  direction X~, there is little change in n/A with pressure because 11 hardly changes. 
Therefore Ac2~/~P ,~ (n/A)(k2 ~xl2/AP+12 AkJAP) .  The length and spring constant 
are inversely related to one another so that the increase in spring constant  is partially 
offset by change in length. Hence c~2 will not  increase rapidly with pressure. 

xz 

m. Xl 
t ~ 2 ,  '1 

(o) (b)  

FIG. 4. Anisotropic model at low (a) and high (b) pressures. 

The third observation regarding the pressure dependence is the occurrence of  
negative derivatives in open structures like beryl and quartz. When a close-packed 
structure is compressed, the atoms move closer together but this need not be true in 
an  open structure where rotations can take place. To determine the effect on the 
elastic constants, consider equation (5) describing the pressure dependence of  the 
stiffness. The new feature here is the pressure dependence of  the stiffness k. If  we are 
considering the stiffness along X1, for  example, k 1 may decrease with P because at 
high pressure a stress along X1 produces a bending rather than a stretching motion. 
The stiffness coefficients for bending are considerably smaller than for stretching. 
Thus rotat ion can lead to negative pressure-dependence of  shearing stiffness coeffi- 
cients. 
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