MINERALOGICAL MAGAZINE, JUNE 1973, VOL. 39, PP. 246-7

Nickel-hexahydrite from Tasmania, Australia

IN April 1968 small amounts of a pale-green mineral were observed among mineral exploration samples from Noddy's Creek, Tasmania. The mineral formed thin efflorescent crusts on rocks mainly composed of talc, pyrite, and quartz. A partial chemical analysis, performed by Mr. K. Kinson on a small amount of the isolated mineral, showed major quantities of Ni (NiO over 15% by weight) plus minor amounts of Mg, Zn, Co, and Fe²⁺. These results were supported by emission spectrographic and X-ray fluorescence examination. The refractive index of the mineral was in the range I·47 to I·49 and optically it was found to be biaxial negative. An indexed X-ray diffraction powder pattern of the mineral is listed in table I. The monoclinic unit-cell data, a 9.97, b 7.24, c 24.23 Å, and $\beta 98.5^\circ$, differ slightly from Sutor's (1959) data on

hkl	$d_{ m cale}$	$d_{\rm obs}$	I/I _o	hkl	$d_{ m cale}$	$d_{\rm obs}$	I/I _o	$d_{ m obs}$	I/I _o
004	5.990 Å	5 [.] 985 Å	10	222	2·780 Å	2.778 Å	10	1.962 Å	10
110	5.836	5.829	13	026	2.682	2.683	13	1.947	11
ĪH	5.789	_		223	2.667	2.667	10	1.927	8
III	5.260	5.570	5	225	2.595	2.592	8	1.922	10
Ī12	5.438	5.434	19	118	2.573	2.571	11	1.905	8
112	5.075	5.072	21	224	2.537	2.535	6	1.898	8
200	4.931			Ī19	2.506	2.211	10	1.878	14
Ī13	4.922	4.924	25	4 02	2.489	4.488	14	1.861	22
202	4.818	4.818	22	2 26	2.461	2.458	16	1.844	9
ī14	4.376	4.373	100	317	2.451	2.425	6	1.827	10
202	4.340	4.340	14	208	2.406	2.407	10	1.818	13
204	4.118	4.150	19	315	2.398	2.398	5	1.767	9
114	4.008	4.004	61	402	2.348	2.320	10	1.759	17
006	3.993			028	2.308	2.310	8	1.753	8
Ī15	3.873	3.870	9	318	2.276	2.277	17	1.720	9
020	3.620	3.616	24	226	2.263	2.259	17	1.706	8
204	3.558	3.562	24	ī 34	2.209	2.207	10	1.401	9
ī16	3.439	3.440	16	228	2.188	2.191	9	1.699	9
2 06	3.355	3.329	29	404	2.170	2.172	10	1.677	8
116	3.169	3.175	13	134	2.157	2.156	8	1.656	8
Ī17	3.025	3.069	8	ĪIII	2.101	2.098	7	1.649	5
311	3.021	3.048	5	4 08	2.054	2.054	10	1.642	6
312	3.001	2.998	18	Ī36	2.053			1.607	13
311	2.922	2.922	25	42 3	2.035	2.035	6	1.588	5
206	2.901	2.903	35		_ • •	2.019	8	1.565	9
222	2.894	2.894	37			2.006	13	1.489	12
223	2.822	2.824	13	_		1.992	21		

TABLE I. X-ray powder diffraction data for nickel-hexahydrite

Diffractometer data, Cu-K α radiation: monoclinic cell *a* 9.97, *b* 7.24, *c* 24.23 Å, β 98.5°, indices consistent with space group C_2/c .

synthetic crystals of NiSO₄.6H₂O, for which he determined the space group C_2/c , and Z = 8. Oleinikov et al. (1965) first discovered the mineral from the Severnaya mine of the Norilsk sulphide deposit and described it under the name of nickelhexahydrite. The mineral formed bluish-green crusts on unweathered gabbro. They list two chemical analyses with variable nickel content and their powder patterns slightly vary with composition. In chemical composition and strong d-spacings the Tasmanian mineral is similar to the one with lower nickel content. The artificial nickel sulphate hexahydrate is dimorphic, a blue, tetragonal form, stable under ordinary conditions, inverting to the green, monoclinic form at 53.4 °C (Mellor, 1936). The tetragonal compound occurs in nature as the mineral retgersite (Frondel and Palache, 1949) and, contrary to expectation, the monoclinic nickel-hexahydrite is also stable at room temperature. Metastable condition for the Tasmanian mineral is discounted on the grounds that its formation at or above the transition temperature requires too high concentrations of NiSO4 (solubility approx. 52 % at 53 °C) for crystallization to occur in nature. It seems likely, although there is no experimental proof for it, that the monoclinic structure is stabilized due to a certain critical percentage of the substituent cation(s). This is to be expected, for all of the observed substituents, zinc, magnesium, iron, and cobalt form stable monoclinic minerals or compounds and their tetragonal counterparts exist only as unstable artificial compounds. An example of substitution-controlled structure is siderotil (Fe,Cu)SO_{4.5}H₂O, which requires at least 1.3 wt % CuO to stabilize its triclinic structure (Jambor and Traill, 1963) in preference to monoclinic rozenite. The Tasmanian mineral was probably formed under ordinary conditions by the oxidation of pyrite which was the source of nickel, iron, and sulphur. Oleinikov et al. (1965) propose a similar origin from waters containing free H₂SO₄.

Acknowledgement. The research work was done at the Central Research Laboratories, Broken Hill Proprietary Company Limited, Shortland, New South Wales, Australia.

Department of Geology, Ulster Museum, Belfast

R. NAWAZ

REFERENCES

FRONDEL (C.) and PALACHE (C.), 1949. Amer. Min. 34, 188-94.

JAMBOR (J. L.) and TRAILL (R. J.), 1963. Canad. Min. 7, 751-63.

MELLOR (J. W.), 1936. A Comprehensive Treatise on Inorg. Chem. 15, 453.

[OLEINIKOV (B. V.), SHVARTSEV (S. L.), MANDRIKOVA (N. T.), and OLEINIKOVA (N. N.)] Олейников (Б. В.), Шварцев (С. Л.), Мандрикова (Н. Т.) и Олейникова (Н. Н.), Зап. всесоюз. мин. общ. Amer. Min. 51, 529 (1966).

SUTOR (D. J.), 1959. Acta Cryst. 12, 72.

[Manuscript received 16 August 1972]

© Copyright the Mineralogical Society.