Review of the hydrated oxides of U and Pb, with new X-ray powder data

MICHEL DELIENS

Département de Géologie et de Minéralogie, Musée royal de l'Afrique centrale, 1980 Tervuren, Belgium

SUMMARY. New X-ray powder data are presented for vandendriesscheite, fourmarierite, masuyite, and wölsendorfite. Literature data on the known U-Pb hydrated oxides is reviewed, and suitable criteria for their distinction are set forth.

SEVEN hydrated oxides of lead and hexavalent uranium are known: curite (Schoep, 1921), fourmarierite (Buttgenbach, 1924), masuyite, vandendriesscheite, and richetite (Vaes, 1947), wölsendorfite (Protas, 1957), and the unnamed 'Mineral C' from the Wiseman mine, Mitchell County, North Carolina, briefly described by Frondel (1956).^T

The samples in the mineralogical collection of the Musée royal de l'Afrique centrale from the uranium deposit of Shinkolobwe, Shaba (= Katanga), have been systematically re-examined in order to select the uranium-lead oxides. X-ray diffraction data on the selected specimens have been compared with data from the literature and their qualitative compositions checked; all the above species except richetite and 'Mineral C' were recognized.

Of the seven species, *richetite* has never been quantitatively analysed or adequately described, and material for a new study was not found; it should be readily distinguished from the others, as it occurs in thin black pseudohexagonal (monoclinic) plates, and the others are various shades of orange or red.

Curite, which is very common at Shinkolobwe, is easily distinguished by its acicular habit and its characteristic X-ray powder pattern (cf. Table V).

The present study therefore concentrated on the four species vandendriesscheite, fourmarierite, masuyite, and wölsendorfite; they are all orthorhombic, with related unit-cell dimensions and similar, though distinct, X-ray powder patterns. They are very similar, too, in habit and physical properties. Crystals are less than 1, or at most 2 mm in size, usually tabular on $\{001\}$ with pseudohexagonal outline. and they also occur as microcrystalline aggregates or crusts. Such properties as refractive indices do not afford reliable criteria for differentiating the species—apart from the difficulty of determining indices in the range above 1.8, there are considerable variations in the values reported, possibly due to variations in the water content.

The best criterion for determining these four minerals is the X-ray powder pattern. Although their patterns display marked similarities, related to their similar pseudohexagonal pseudo-cell dimensions (Table V) there are several minor but typical differences between them. There is an appreciable decrease in pseudo-cell dimensions in the order vandendriesscheite-fourmarieritemasuyite-wölsendorfite, paralleling the decrease in U/Pb ratio (Table V). The strong or

¹ 'Mineral X', from Great Bear Lake, Canada, first described by C. Palache and H. Berman as a U-Pb oxide (Am. Mineral. **18**, 20 (1933)) and later regarded as $UO_3 \cdot 2H_2O$ (C. Palache, ibid. **19**, 309 (1934)), has been identified as vandendriesscheite (Frondel, 1956).

[©] Copyright the Mineralogical Society.

52	
TABLEI. X-ray powder data for vandendriesscheite. Protas's Shinkolobwe specimen was RG 4413 of the Musée royal de l'Afrique centrale	Guillemin (1958) cites identical data for RG 2827

Present	study					Christ ar (1960)	nd Clar	-4	Protas (1959)						Fronde (1958)	_		
RG. 28	27a	RG. 6	374c	RG. 6	429c	HM 106.	. 523		Bois N	Voirs	Shink	olobwe	Synthe	stic	Shaba		Shaba	
d(Å)		d(Å)	-	d(Å)	-	$d(\text{\AA})_{\text{mes}}$	1	hkl	d(Å)		<i>d</i> (Å)		<i>d</i> (Å)		<i>d</i> (Å)		d(Å)	I
7.18	80	7.26	8	7.21	80	7.25	100	006	7.29	2F	7:34	Ľ.	7.22	ц	7.41	100	8-27 7-31	20
	-				-	6.94 6.81	99	210 060							6.49	20	64.9	30
0.32	Sa			0.21	50	6.33 5.77	m 4 1	230 240									4.85	10
4.48	۶d	4.48	δđ	97.46	۶d	4.53 4.53	10 V	246, 270 129			4.55	2f			4.58	20d	6.39	20
-	•	-	3	-	b	2		Ň							4.27	0I 0	4·14	10 02
3·61 3·54	50 50	3-61 3-53	70 70	3.61 3.522	70 70	3.53 3.53	100 25b	0. 0. 12 2. 10. 0(*)	3.63 3.54	mF	3.65 3.53	шF	3.58 3.50	mF	3.61	2 G	3.58	80 8
61.8	001	3.18	100	3.17	100	3.17 3.06 3.01	75b 2 2	2. 10. 6(*) 2. 4. 12 470	3.18	3F	3.19	3F	3.15	2F	3.22	100	3.37 3.19 3.00	0 6 0
2.799	Şđ	667.2	S	2.800	10	2.94 2.80 2.722	5 8b	÷			2.78	2f	2.77	ł	2.83	20	2.73	20
2.539 2.419 2.290	30 5d	2:534 2:421 2:290	30 10	2:527 2:414	40	2.500 2.522 2.401 2.29	25 35 35		2.53	E	2.54 2.43 2.31	r f H	2.51 2.30	f n	2.55 2.43 2.32	40 20	2:53 2:40 2:32	50 10
2-066 2-045	20 5	2.039	15	2.035	35	2.18 2.058 2.034	30 15 5 30		2.04	f	2.05	mf	2.03	J L	2.05	30	2.05	20
1.965 1.005	ð 5	196.I	01	056'I	15 15	196·1	04 2 2 1		096.I	f	996-I	mf	166-1	I E	10.7	0	606.1	2
1-817	15	1-816	5	1.812	30	1.877	4 4 0				I-823	2f			1.886 1.811	10d 30	on6.1	30
1.784	30	<i>LLL</i> .1	15	1771	40	167-1	m 00		<i>LTT</i>	f			1.762	mf	1.783	30	1-797 1-773	20 20

(*) + other *hkl*-values.

M. DELIENS

	Université libre de Bruxelles; UCL, Université Catholique de Louvain.	obably not due to fourmarierite (see text)
v	JLB,	Å is p
	TABLE II. X-ray powder data for fourmarierite. U	The line at $7.24-7.31$ k

Present stu	dy									Christ a (1960)	ind Clarl		Bignai (1955)	pu -	Guillem (1958)] .g	Protas (1959)			I
UCL 849a		ULB B		RG. 28	27c	RG. 64	29b	RG. II	397a	MNSU	R 8396			(RG. 441		RG. 44	13	Synthetic	
d(Å)	~	d(Å)		d(Å)	1	d(Å)	~	d(Å)	1	$d(Å)_{\rm mes}$	Iviz	hkl	d(Å)	~	d(Å)	~	d(Å)] ~	d(Å)	-
				8.66	IO					8.55	-	H				;	8 54 8 54	Ju,	8-54	mf
7-24	6 5	01.6	00	7.27	6 5	7-31	6 6	7.13	80	7.20	LOO L	2002	7.12	эř	7.34	Ц	8·18	f H	21.2	ц Ц
6.41	2 2	6.37	2 Q	66.9	2 8	6.37	202	6.39	15	6.42		210	6.36	t J	6.36	f	6.43	1 6	6.43	ម
						ç., 2	4			¥0.3	-	202					5.32	2f mf	90.4	, The second se
				4.82	01	6.4 18.1	n un			4.82	• ••	131					4.79 4.79	n fu	4.70	l f
4.36	15	4.33	30	4.35	30	4.34	50	4.36	15	4.36	9	113	4.31	f	4.34	f	4-35	Ħ	4.33	ដ
4-I3	ŝ	4-08	ŝ	4.13	Ś					4.13	1	040 ,			4.11	3f	4.10	mf	4.10	mf
1-80	v	3-80	Ċ,	2.01	01	2-80	QI I	2.01	10	4:00	3b	123			10.2	٦f	00.6	mf	2.88	'nf
2.57	, ĉ	3.558	dop	3-567	8	1-5-6	100	3.562	100	3.58	50	004				1	05.6	E E	7.57	шF
		- ^ > >						5		3.55	18 18	240					3.56	ц		
3.50	4	3.494	30	3.505	60	3-51	20	3-523	50	3.50	9	400	3.53	2F	3-53	ц			3.54	ш
										¢							3.49	E,	3.49	E,
,						,		`		3.28	I	313	`	ç	,	I	3.26	2f	3.25	2f
3.167	100	3.151	100	3.169	100	3.165	001	3.169	100	3.178	20	242	3·16	4	3.16	3F	3.17	2F	3·16	$^{2}\mathrm{F}$
				00-	1					3-143	10	402					3-14	ຮ່		3
				990.E	ŝ					970.E	۱ ۱	412 143					90.5	Ē	3.07	
										2.97	1	250					2.97	2f		
2.729	10	2-720	30	2.730	20	2.726	25	2.739	20	2.724	4	432	2.71	ដ	2.72	f	2.72	E	2.72	Ħ
										2.70		044								
									;	CO.7	-	153						;		ŗ
2.511	20	2.403	40	2.213	40	015.7	20	715.7	20	2.503	م د	404	19.7	Ш	05.7	Ē	2.51	Ш	2.51	L H
2.382	IO	2.382	2			2-388	15	2.383	10	2.389	- 4	-			2.39	2f	2.38	E	2.38	Ħ
•		2.358	ŝ							2.340	I								5	
2.310	ŝ	2.308	S	2:316	S	2-316	s	2-314	ŝ	2.311	I				2.30	2f	2.31	H	2:30	Ħ
2.226	S	2.218	ŝ	2-224	s	2.225	10	2.227	IO	2.229	ы				2.21	2f	2.22	E	2.22	H
										2.181	7						2.17	2f		
						2,135	S			2.136	n				2.12	2f	2-13d	шf		
2.058	ŝ	2.046	15	2.054	01	2.057	2	2.053	IO	2.056	6 0 -			ç	2.04	2f	2.05	E	2.05	۲ ۲
2.027	Io	2.024	15	2.029	15	2.028	20	2.029	01	2-030	4		2.02	mt	2.02	4	2.02	шF	2.02	mF
2.003	ŝ	2.000	15	2.008	10	2.004	IS ,	100.7	10	2.010	4.		`	ţ			2.00	mf	2.00	'n
LL6.1	6	1-972	50	LL6.I	40	976·1	90	1-975	50	86·I	I2D		96·I	<u>.</u>	1.972	Ë.	726.I	ĽL,	1-972	ц

M. DELIENS

medium lines 200, 002, and 111 (indices for the pseudo-cell) are particularly useful for discrimination, and are listed, together with some other useful lines, in Table V.

Frondel's 'Mineral C' contains small amounts of many oxides other than lead and uranium, including 2% BaO; how far these are essential is uncertain. Its refractive index (1.77-1.82) and X-ray powder pattern (strongest lines 3.46 Å (10), 3.09 (10), 1.916 (6), 1.730 (6)) suggest that it could possibly be an impure barian vandendriesscheite, but this is mere speculation.

Present	study			Christ a (1960)	nd Cla	ırk	Guiller (1958)	nin	Cherv (1960)	et	Protas (1959)		Frond (1958)	el
RG. 28	40d	RG. 644	μ ι	HM. 10	6. 524		RG. 2	832	Shinke	olobwe	Synthe	etic	Shaba	
d(Å) _{mes}	Ivis	$d(\text{\AA})_{\text{mes}}$	Ivis	d(Å) _{mes}	I	hkl	<i>d</i> (Å)	Ι	$d(\text{\AA})$	I	<i>d</i> (Å)	I	d(Å)	I
7.10	80	7.10	80	7.08	100	006	7.10	F	7.10	2F	7.06	2F	8·53 7·10 6:43	10 100 20
6.02	15	6.06	15				5.99	3f	6∙05 5∙87	f f	6.08	2f	• 45	20
									4.60	2f	4.26	2f	4.80	10
4.38	5	4.40	5	4.36	6				4.38	2f	4.36	2f	4.32	40
				4.30	6									
		((3.88	31		F			3.92	20
	0-	3.20	20	3.20	35	0. 0. 12		T 2	3.24	F			3.24	80
3.528	80	3.52	80	3.52	70	660	3.20	Г	3.52	Г Г		• T		
3.491	80	3.49	40	3.40	21	12, 0, 0			3.49	Г Г	3.49	3г		
				2.16		666			3.45	г лГ		٩E		
3.733	100	2.127	rood	3/10	12	12 0 6	2.77	٥F	3.14	31	3.14	3F	3.12	90
3132	100	312/	1000	312	30	12. 0. 0	3.11	21	3.10	5r f	3.09	31	2.07	
2.761	20	2.761	7.6				2.77	f	3.02	- m	2.78		2.9.7	10
2 /04	20	2 /01	13				2/1	hf	2 /0	111	2 /0	111	2.74	30
				2.51	6	12 0 12	2 00	31			2.57	m	2.51	60
2.486	40	2.486	30	2.484	12	6.6.12	2.48	mf	2.40	m	2 33	111	2 31	20
	4*	2 400	30	2.38	A		~ 40		- 49				2.28	20
2.364	. 10	2.365	5	2.36	9	0. 0. 18	2.37	mf					- 30	
2.281	30	2.274	20	2.27	á		2.28	f						
2.168	10	2 168	10	,	•		2.18	2f						
				2.12	4									
				2:008	79	0. 12. 0	2.00						2.06	10
2.019	40	2.018	40	2 000	10	18, 6, 0	2.00							
				1.973	9								1.984	40
1.952	50	1.952	40	1.92	17b		1.936	mf						
1.853	5b						1 844	2f					1.908	30
				I · 79	4								1.784	40d
I .774	10	I 775)		1.766	12									
1.753	25	I·755 }	10p	1.745	9			_						
1.739	10	1.41)					1.241	\mathbf{mf}						
				1.72	4								1.727	20

TABLE III. X-ray powder data for masuyite and for a synthetic product 'apparenté à la masuyite'(Protas, 1959)

Vaes (1947) described masuyite as a hydrated oxide of Pb and U, but Cuttita (in Frondel, 1958) gave the formula $UO_3 \cdot 2H_2O$. A qualitative X-ray fluorescence analysis was therefore made of all four species studied, and confirmed the presence of lead in all four and of calcium in wölsendorfite.

In Tables I to IV the new X-ray powder data (Cu- $K\alpha$ radiation, 114.6 mm diameter camera) are presented and in Table V the unit cell and optical data for the four species are collected and compared with those of curite, and their distinctive X-ray powder lines set out.

Discussion

Vandendriesscheite. The new X-ray powder data agree well with those of Christ and Clark (the latter include many weak lines not recorded elsewhere, presumably due to longer exposure),

Present	stuay							(1957)			Protas (1959)				Fronde (1958)	1	Chervet (1960)	
RG. 22	25a	RG. 2 ⁻	768	RG. 2	832	RG. 62	† 28	ASTM	12-15	6	950 F		CV 58	•	Wolsen	dorf	Margna	ic 909
d(Å).	-	d(Å)	-	d(Å)	~	d(Å)	_	d(Å)	-	hkl	<i>d</i> (Å)	-	d(Å)		d(Å)	-	d(Å)	
		7-86	10												7-86	50		
66.9 06.9	5 5	10.9 96.9	50	6.96 6.08	50	96.9	40	6-93 6-02	30 Q	020 200,120	6-93 5-99	F mf	6.83 5.99	Б mf	6.83	40	7:46 6:87 5:97	6 ⁶ 8
;	400	3.516	30	ç		3.523	20	3.51	4 0	002,040	,	ſ		ļ			3.74	20
3.44	006	3.40	<u>6</u>	3.40	100	3.404	6	3.47	88	320,301 041.022	3.40	31	3.42	3F	3.45	90	3.44	6
60 .£	100	3.10	100	3.10	100	3-105	loob	3.09	100	321	3.10	2F	3.08	2F	3.09	100	3-09	100
2.734	30	2-740	qoi	2.752	15	2.731	S	2.75	30	420,401	2.74	m	2.72	mf	2.73	40	2.72	30
2.430	20	2.450	22 10	2.400	52 V	2.455	20	2.45	300	341,322	2.45	B	2.43	ш	2.44	60	2.44	40
2.270	20	2.264	15	2.274	n 0	2-266	IO	2.25	30	412	2.26	н	2.25	mfd	2.26	50	2.26	40
								2.14	5b	152,213	2.16	2f	•		2.15	50		ŀ
2.010	30	2-008	20	2-013	30	2.008	20	2.01	30		2.008	mF	2.003	шF	2.09	20	2.00	20
1.987	25	066-1	50	680·1	S	1-984	01	866.1	S			ŗ	•		966. I	60		\$
200-1	60	1 .443	15	026-1	70	I -922	20				I •932	ų	1-001	Ц	200° 1	00	1.921	ŝ
1.892	0 I	1.898	5	106-1	ŝ			68·1	3ob		1-896	f	706 1	-	/06.1	00	/ 06.1	2
1-812	10		I	760.1	n						629.1	710	908-I	2f	1.817	20	118.1	20
1-734	30	1-700	∿ 6	1-741	50	1.737	60	1-74	3ob		1.740	mF	1.728	E	1.729	70	122.1	60
1-718 817-1	50 2	1.698	v	209-1	01	roy-1	ŝ	1-600	ç		ruy-1	mf	017-1	ш,	-09.1			
1-677	9 Q	1-677	15	1-679	2	1.677	Q	I •681	20		1.676	mf	1-667	mf	1.660	20	1.66a	01
1-655	IO			I-658	5	:		1-658	20		1.656	mf	1-648	mf	1·645	n S	1.652	202

TABLE IV. X-ray powder data for wölsendorfite

55

REVIEW OF THE HYDRATED OXIDES OF U AND Pb

M. DELIENS

and with Protas's natural samples. Protas's synthetic material is also in general agreement, but gave distinctly lower spacings throughout. Frondel's data, however, include a number of lines not recorded by other observers and other lines are displaced, while the doubtlet 3.61, 3.53 Å is replaced by a single line at 3.61 or 3.58 Å.

Fourmarierite. The line at 7.24-7.31 Å in the present data is probably not due to fourmarierite itself, but to another, unidentified mineral present as a pale yellow outer zone on many of the platy crystals; it was not observed on ULB B, which does not give this line, and was not

	Vandendriesscheite	Fourmarierite	Masuyite	Wölsendorfite	Curite
Unit cell $\begin{cases} a \\ b \\ c \end{cases}$	14·07 Å* 40·85 43·33	14·00 Å* 16·47 14·39	41·93 Å* 24·22 42·61	11·95 Ň 11·90 ŧ§ 13·99 13·98 7·02 6·85	12·50 ņ 13·01 8·40
Pseudo-cell (ortho- hexagonal)	$\begin{array}{c} 7.04 \ (a/2) \\ 4.08 \ (b/10) \\ 7.22 \ (c/6) \end{array}$	7·00 (a/2) 4·12 (b/4) 7·20 (c/2)	6·99 (a/6) 4·04 (b/6) 7·10 (c/6)	$7 \cdot 00$ $6 \cdot 99 (b/2)$ $3 \cdot 98$ $3 \cdot 97 (a/3)$ $7 \cdot 02$ $6 \cdot 85$	
Formula	PbO.7UO ₈ .12H ₂ O†	$PbO.4UO_3.4H_2O^*$	3PbO.8UO3.10H2O	(Pb, Ca)O. 2UO ₃ . 2H ₂ O	2PbO.5UO3.4H2O†
Refractive indices	$\begin{cases} 1.780^*; 1.70^{\circ} \\ 1.785, 1.790^{\circ} \\ 1.850^*; 1.810, \\ 1.824, 1.840, \\ 1.882^{\circ}, 1.884^{\circ} \\ 1.825, 1.884^{\circ} \\ 1.825, 1.845, \\ 1.826, 1.845, \\ 1.890^{\circ}; 1.884^{\circ} \end{bmatrix}$	1-863*; 1-865†; 1-85 1-885*; 1-900†; 1-92 1-890*; 1-904†; 1-94	1·785† 1·895*; 1·90†; 2·11 2·15¶ 1·915*; 1·917†	2·05 α' on (001)‡ 2·09 γ' on (001)‡	2:05†; 2:06!! 2:07, 2:08†; 2:06, 2:21!; 2:12†† 2:12†; 2:15!!; 2:12††
$2V_{\alpha}$	Med., $r > v^{\dagger}$	Large, $r > v \parallel$	50°, $r > v^{\dagger}$		Large, $r > v \parallel$
Pleochroism $\begin{cases} \alpha \\ \beta \\ \gamma \end{cases}$	Colourless† Golden yellow Golden yellow	Colourless , ** Pale yellow Deep yellow	Pale yellow† Deep gold Deep gold	_	
Orientation	[α [010]† [β [100]	α [100] ,** β [001]	α [010† β [001]	_	γ [001]
Diagnostic X-ray lines	$\begin{cases} 3.6 \text{ s } \text{co2} \\ 3.18 \text{ vs } \text{iii} \\ 2.80 \text{ w} \\ 2.42 \text{ mw} \end{cases}$	3:57 vs 002 3:51 ms 200 3:16 vs 111 6:4 w 2:73 w 2:51 m	3·56 m 002 3·52 s 110 3·48 ms 200 3·13 vs 111	3:46 vs 002 3:10 vs 111 6:9 s	3·51 vs ‡‡ 3·36 s 3·11 s 6·22 vs

TABLE V. Summary of data for the U-Pb oxides

* Christ and Clark, 1960.

‡ Protas, 1957, 1959. || Larsen and Berman, 1934.

** Buttgenbach, 1924.

ti Bignand, 1955.

† Frondel, 1958.§ Protas in Chervet, 1960.

¶ Vaes, 1947.

†† Billiet, 1926.

§§ Toussaint, 1961.

observed by Christ and Clark, with whose data the present agree well otherwise—better than with those of Protas. The data of Guillemin differ mainly in the first strong line (7.34 Å as against 7.11-7.20) and the absence of a line at 3.56-3.60 Å, which is also absent in the generally line-poor data of Bignand. The data cited by Frondel (1958) for fourmarierite are clearly those of wölsendorfite, which had only just been described when his work was published.

Masuyite. The present data agree well with those of Christ and Clark and of Chervet. Frondel's data are very different, and his specimen was probably fourmarierite. Guillemin's data are a puzzle: the weak line at 3.88 Å suggests fourmarierite, but few other lines fit; the weak line at 2.60 Å does not appear on any other pattern; many of the other lines could equally well be due to masuyite or to wölsendorfite, and material from the same specimen appears to be wölsendorfite (present study, Table IV).

Wölsendorfite. All the available data are closely similar, with one minor discrepancy: a line appears at medium strength at 1.94-1.92 Å in some data and one at 1.907-1.902 Å in others, but only Chervet's Margnac II specimen has both these lines.

REFERENCES

Bignand (C.), 1955. Bull. Soc. fr. Minéral. Cristallogr. 78, 1-26.

Buttgenbach (H.), 1924. Ann. (Bull.) Soc. géol. Belgique, 47, C 41-43.

Chervet (J.), 1960. Les minéraux uranifères français; II Les minéraux secondaires. Bibl. Sci. tech. nucl., Presses Universitaires de France (Paris).

Christ (C. L.) and Clark (J. R.), 1960. Am. Mineral. 45, 1026-61.

Destas (A.), Guillemin (C.), and Vaes (J. F.), 1958. Minéraux d'uranium du Haut-Katanga. Les Amis du Musée royal du Congo belge, Tervuren.

Frondel (C.), 1956. Am. Mineral. 41, 539. ----- 1958. U.S. Geol. Surv. Bull. 1064.

- Riska (D.), and Frondel (J. W.), 1956. U.S. Geol. Surv. Bull. 1036-A.

Guillemin (C.), 1958, in Destas et al., 1958.

Larsen (E. S.) and Berman (H.), 1934. U.S. Geol. Surv. Bull. 848.

Protas (J.), 1957. C. R. Acad. Sci. Paris, 244, 91-93.

1959. Contribution à l'étude des oxydes d'uranyle hydratés. Thèse, Faculté des Sciences, Université de Paris. Schoep (A.), 1921. C. R. Acad. Sci. Paris, 173, 1186.

Toussaint (J.), 1961. Ann. Soc. géol. Belg. 84, 365.

Vaes (J. F.), 1947. Ann. Soc. géol. Belg. 70, B212-29.

[Manuscript received 28 October 1974, revised 8 May 1976]