M10| R.J.Davis et al.: Palladseïte

R.J. Davis, A.M. Clark, and R.J. Criddle

Departinent of Mineralogy, Brition Museum
(Natural History), Cromwell Road, London SW7 SBD
Clark $\frac{9 t}{}$ gil. (1974) reported on the first part of an examination of the reaidual concentrates from the gold workings at Ttabira, Mings Gerais, Brazil, contained in specimen number हM 1934,72. The concentrates were presented to the Mineralogy Dephrtivent of the Britich Museun (Natural History) by Berngrd Hall Sandera. The mainly monomineralic grains (apart from surface deposits) consist dominantly of arsenopalladinite, with rarer atheneite and isomertieite, all three being new minerals, essentially arsenide-antinonides of palladium. In a survey under the electron microprobe of greins selected at randon from EM 1934,72 Chark 星追. found Grain 1 containing major palladisum and selenium and mínor copper. In a parallel survey by Xuray atngle crystal methode of randonly selectad grains wo found Grain z_{1}, identifiad from its cubic cell dimensions as a palladium selenide near PdSe in conposition. Grains 1 and 2 proved to be identical, and further grains were later discovered by optical and aicroprobe methods. The latter form the type specinens of a new mineral, palladseite, named from the chemical conposition (PALLADium SBLenide), and approved by the Conmicosion on New Minerales and Mineral names, International Mineralogical Assaciation.

Palladíun selenide dintiorals aro very rart. Besides major palladium and seleniur, oosterboschite, ($\left.\mathrm{Pb}, \mathrm{Ca}_{7}\right)_{\mathrm{Se}}^{5}$, (Johan at al, 1970) contains 17% copper, which is probably essential. Zincken (1829) found selenopalladium in clausthalite ores from cilkerode, Harz, but he later withdrew verbally the presence of selenium. There is an extensive literature on symthetic palladium selenides (see Bibliography), which shows that palladium selenides near PdSo in composition are present in the anode sludgea from the eleotroistic purifioation of copper (Ignatev and Plakain, 1958; Dolivo-Dobrovol'rekii, 1964; Greivar; 1965i, and in residual aluages after the purification of silver (Blickcilber) from silver coins ($\mathrm{R} \mathrm{y}_{\mathrm{ssl}} \mathrm{er}, 1876$).

Speciean preparation. Five grains ware prapared for reflected light microscopy end election probe microanalysis. They were mounted in a cold setting egoxy resin and, owing to their size ($0.2-0.5 \mathrm{~mm}$), polished without pre-grinding on Hyprosel-pellon lape with dianond abrasives $6 \mu \mathrm{ma}$, 3 pm and 1 pm . Polishing was completed with $1 / 4$ pm diarond paste on cloth laps. Ethanol and distilled water were used together as the lubricant at all the polishing stages.
Optical characteristics: Palladogite is isotropic. In plane polarized light it is white except when conkared with the other minerals of the Itabira concentrateg, atheneite, arsenopalladinite and isomertieite, (see Clark at a1. 1974) where it appears grey and lacking any detectable epectral huo. The grains have emooth (straight and curvilinear) marginsi they are cubangular, anhedral to fubhedral. The largast greins, 1 and 5 are monomineralise while graing $2-4$ contain inclusions. Grain 3 contains Inclusione of the two lower reflecting minorals found separately in graine 2 and 4. Both inclueion phases are isotropic; they oocur intergrown together as discrete graine $1-4 \mathrm{pm}$ in size with round cornered, equare outlines; the lower reflecting grey phase encloses roctangular cores of the highor reflecting phase. They also occur as aggregated elusters of smaller roundod grains (grain size < $7 \mu \pi-2 y n$, aggrogated up to 5yn) and as subangular wedges, or fingers, penetrating the palladseite grain froct its riw, with a maximum length of $8 \mu \mathrm{~m}$ and width of $4 \mu \mathrm{~m}$. The small aize of these

TABLE I. Slectron probe analyess and cell dimensions of three palladseite Eraine. $A=$ weight per cent, $B=$ atonic proportions based on ? atons per formula unit

Grain 1			Grain 2			4 main 3			
	A	B		A	B		A	B	
Pd Pt Cu Hg Se	55.77 0.00 3.99 1.66 38.59	$\left.\begin{array}{r}15.47 \\ 0.00 \\ 1.85 \\ 0.24 \\ 14.43\end{array}\right\}$	-17.56	55.13 0.39 4.33 1.34 39.38	$\left.\begin{array}{c}95.17 \\ 0.06 \\ 1.99 \\ 0.18 \\ 14.60\end{array}\right\}$	+17.40	55.47 0.04 3.89 1.68 38.97	$\left.\begin{array}{c}75.38 \\ 0.01 \\ 1.80 \\ 0.25 \\ 14.56\end{array}\right\}$	$\}_{17.44}$
100.04		100.47			100.05				
A $\stackrel{\square}{ }$	10.635(2)			10,628(4)			10.640(2)		

inclusione preciuded the use of quantitative reflectance and cheatical analyses, but qualitative probe seans indicate that both phases are copperbearing oxides of palladium. As they are isotropic they are unizikely to be palladinite, the only oxide of palladium previously reported,
Chemical composition. Electron probe analyses of grains 1,2 and 3, given in Table I, were obtained by mearuring Pd, Pt, and Cu relative to pure metal standards, hg against oinnabar, and Se against synthatic clauethalite, pose. The instmment uoed was a Cambriage Geoscan and the measurements were made at an eccelerating potential of 20 keV . The neasurad intensities, after dead time correctione, were proceseed with the BM-IC-NPL computer programe (Mason et al., 1969) to give the tabulated wieght percentages. Recalculation of these anolyses to a total of 32 atoms approanted the the ideal formula ($\mathrm{Pa}, \mathrm{Cu}_{17} \mathrm{Se}_{15}$ in each case. The three analyses are virtually identical apart from the presence of minor Pt in Grain 1. The seleniua concentration is similar to that given for oosterboschite (Johan et el. 1 1970) and until the X-ray and optical data proved otherwite, palladseite was thought to be a Cu-poor oosterboschite.

Table II. Reflectivity data

	Grain \dagger		Gratin 2		GRATM 3	GRAIN 4
$n \mathrm{~m}$	air	oil	air	oil	air	air
400	40.3	26.0	39.9	27.4	41.0	42.7
420	41.2	26.9	40.9	28.3	41.6	42.6
440	42.2	27.7	41.8	28.9	42.3	43.1
450	42.8	28.6	43.0	29.5	42.8	43.6
470	43.1	28.9	43.0	29.8	43.1	43.8
480	43.4	29.1	43.0	30.0	43.4	44.0
500	44.0	29.5	43.4	30.4	43.8	44.4
520	44.4	29.9	44.0	30.6	44.3	44.8
540	44.8	30.1	4.45	30.9	44.6	45.2
546	44.9	30.1	4.4	31.0	44.7	45.2
560	45.0	30.2	44.6	31.0	44.8	45.3
580	45.1	30.2	44.8	31.0	44.9	45.3
589	45.1	30.1	45.0	31.0	44.9	45.2
600	45.0	30.1	44.8	30.9	44.9	45.2
620	45.0	30.0	45.1	30.8	44.8	45.1
640	45.1	30.1	45.6	30.9	44.9	45.1
650	45.0	30.1	45.5	31.0	44.9	45.2
660	45.1	30.0	45.6	31.0	45.1	45.2
680	45.1	30.2	46.0	31.3	45.2	45.4
700	45.2	30.5	46.0	31.8	45.4	45.8

Table III. Quantitative colour values

ILluninant C

*	0.3144	0.3148	0.3150	0.3143	0.3143	0.3131
\%	0.3226	0.3243	0.3224	0.3229	0.3219	0.3211
2	0.3629	0.3609	0.3628	0.3630	0.3638	0.3658
$\lambda_{\text {D }}$	572.5	570.4	575.3	570.9	573.8	571.5
$\mathrm{P}_{\mathbf{8}}{ }^{\text {\% }}$	2.8 ?	3.41	2.89	2.84	2.64	2.09
Y	44.72	29.98	44.44	30.79	4. 59	45.03
Illuminant A						
\mathbf{x}	0.4504	0.4503	0.4514	0.4500	0.4506	0.4494
5	0.4103	0.4111	0.4096	0.4705	0.4098	0.4098
2	0.1393	0.1385	0.1390	0.1395	0.1396	0.1409
${ }^{1}$	581.3	579.5	584.4	579.9	582.5	579.7
$P^{\text {e }}$	3.89	4.42	4.08	3.74	3.68	2.81
Y	42.83	30.04	44.61	30.84	14.7.71	45.09

The values in Table III are relative to the CIE(1931) illuminants C and A which have colour temperatures of $6770^{\circ} \mathrm{K}$ and $2854_{4} \mathrm{~K}$ reanective 2 y . The rectangular chromaticity co-ordinates, x, y and z, and the Heimholtz vilues, Y the luminance, λ_{D} the dominant wavelength and P_{e} \& the excitation gority, were computed using the weighted ordinate method.

Fig.1. X-ray powder patterns for palladseite. For explanation see text.

Quantitative microscopy: R values in aitr and Cargille A oil for grain 1 were obtained from $420-700 \mathrm{~nm}$ at intervals af approximately 10 nm using the equipment described in Clark at al. (1974). Grains 2 to 4 were meacured with a Zeiss Universal microscope equipped with photoneter MPNOS, photomultiplier R 446 and a continuous line interference filter. Measurements were made in air for all the grains and with Zeiss oil for grain 2, from $400-700 \mathrm{~mm}$ at 20 nm intervals. A Zeiss hTiC standard (no. 266) wad used with a pair of X16 air and oil objectives.

The spectral reflectance values in air for the different grains, Table II, are relatively constant and, ovar the visible spectrum range, at least, are not obviously sensitive to minor chemical variation. The F values for the two grains measured in oil differ in magnitude at different wavelengths by up to 1.4% relative, but the shape of the curve. are similar. Suantitative colour velues were computed with an unpublished programme developed by G.S. Bearne, M. Hills and Misc K. Shaw for use with an HP 9830 progremmable celculator. The programe used Wright* (1964, Table 8, p.276) condensed tebles for the CIE (1931) system of distribution coefficiento weighted by energy values for the illuminants S_{A} and S_{C}. The reflectances used in the calculations are those show in Table II (excluding the COM wavelengths) and R values which were interpolated from these at intervals of 10 nm . The quantitative colour values so derived for the four graine are similar, Table III. The excitation purity levels are low and the luminance is guite high for both illuminante which explaine why the mineral laeke any detectable hue in reflected light (ohervations were made using a quartz halogen light source, the colour temperature of which aeproximates to that of iliuminant A). It will be seen that the excitation purity and the luminance levels for the A source are higher than for the c source, and that the dominant wavelengthe are shifted by about 9 nm towards the orange. This is to be expected since the A source is 'cooler', with a lower emission in the blue part of the spectrum than the c source.

The grey appearance of palladseite against the other Itabira species is a result of its lover excitiation purity and luminance levels; the dominant wavelengths for the four spocies (c source) being hetween 565 and 583 nm (Table VII, P547, Glark ot al. 1974). The i.sotropy, 1uminance level, and shape of the reflectence curves readily distinpuish palladseite from the anisotropic lameilar twinned oosterboschite (Johan et al. 1970), and from all the previously reported platinum group minerals. Carrollite, $\mathrm{Cu}\left(\mathrm{Co}_{0}, \mathrm{Ni}_{\mathrm{i}}\right)_{2} \mathrm{~S}_{4}$. (Bowie et al. 1975) is the ondy mineral previously reported with similar reflectance properties. However, at the four C.O.M. wrivelengths, the reflectance values of carrollite are consistently $\%$ lower than those of palladseite and the VHNT 100 of palladreite (measured by G.S. Benrne) is 414 (390-437) compared with 351-366 for carrollite.

X-ray studies. Grain Z from the X way survey proved to be cubic whereas oosterboschite is orthorhombic (Johan et az., 1970). A rotation photogranh around [011] showed sharp spots on 15 A layer lines plus smooth powder lines due to microcrystaline potarite. Laue photographs taken aloxe [100] [111], and [011] showed $4 \mathrm{~mm}, 3 \mathrm{~m}$, and 2mon symmetries respectively. Backreflection oacillation photographs with the mean bean position along [100] and [011] respectively peve accurate cell dimensions (Table IV) with a value of $\left(\underline{g} / \underline{\alpha}_{(011}\right)^{2}=3.9996(8)$. heissenberg photographts showed no systematic

approximate cell dimension of $10.6 \$$ the tables of Donnay and Ondik (1975) identified grain 2 as a polladium selenide near PaSe and variously formplated ${ }_{\text {as }} \mathrm{Pd}_{1.1} \mathrm{Se}, \mathrm{Pd}_{9} \mathrm{Se}_{8}$, or, correctly, as $\mathrm{Pd}_{17} \mathrm{Se}_{15}$ of Geller (1962). This identification was confirmed when Grain 1 , already analysed, gave a rotation photograph around [1c0] identical (apart from the potarite lines) with a similar photograph of Grain 2 .

The original Gendolfi "powder" photograph wes supplemented by two further such photographs after remounting drain 1, and by one each from Graing 3 and 4 mounted at.random. Accurate cell dimensions derived by extrapolation methode are listed in Table IV, and are discussed below.

Fig. 1 shows a typical Gandolfi pattern of Grain 1, the pattern of $\mathrm{Pd}_{17} \mathrm{Se}_{15}$ (Gronvold and Rost, 1956 also FDF Card 11-508), and the pattern calculated from thoze structure factors, Fobs, measured by Geller (1962).

Fig. 2. Strueture factors for palladseite measured here, and plotted against the values given by Geller (1962).

[^0]Table IV. Cell dimensions for pelladseite and $\mathrm{Pd}_{17} \mathrm{Se}_{15}{ }^{\circ}$ Unless atherwise stated all results were obtained with filtered $\mathrm{Cu}-\mathrm{Ka}_{\mathrm{a}}$ radiation, using 6 cm diameter back reffection cameras for single crystal rotation (R) and oscillation (O) photographs and cameras of 11.46 cm diametor for powder (P) and Gandolfi (g) photographs

Palladseite			${ }^{P d} 1_{17}{ }^{\text {Se }}{ }_{15}$		
Grain	a ${ }^{\circ}$	Notes	Authors	- \AA°	Notes
1	10.6356 ${ }^{(1)}$	0	Gronvold and Rost (1956)	10.604	P
1	$10.636_{6}(1)$	0	Schubert et al. (1957)	10.64	\dagger
1	$10.633_{2}\left(1{ }_{2}\right)$	R	Kjekshus (1960)	10.6060(1)	P
2	$10.628(4)$		Oeller (1962)	10.606 (3)	P
3	$10.640(5)$	R			
3	10.640 (4)	a			
3	10.640(2)	a^{*}			
4	$10.631(4)$	G			

- Filtered co-Ka radiation ubed.
\dagger Mo experimental detaile given. Result converted from 10.62 kX using factor 1.002023.

Figures im brackete are estimated errors in the lest unbracketed digit. Grains 2 and 3 werd pure; 3 and 4 contained PdO.
Therual expanaion coefficient of $\mathrm{Pd}_{17} / 7^{3 e} 15$ is $9.8 \times 10^{-6} /{ }^{\circ} \mathrm{C}$, edicivalent to $0.000104 \mathrm{R} /{ }^{\circ} \mathrm{C}$ in the cell dimensions (Kjekshus, 1960)

Lines below Galler's pattern suggest that his unmessured structure factors and triangles indicate significant discrepancies between our pattern and that of $\mathrm{Pd}_{17}{ }^{\mathrm{Se}}{ }_{15}$; or between tice latter and Geller's data. Some lines graded ss wwi in Goller's pattern are undeveciea by Gronvold and Rost, but of their seven anomalously strong lines (empty trianglos) five can be attributed to Gellerts unmeazured structure factors and in general the agreement is axcellent. However, our puttern shows ten anonalously weak lines (full triangles) as well as five anomalously atrong ones (empty triangles). This is mainly attributed to the known imporfections (see eog. Cabri ot al., 1975) in Gandolfi patterns and we were only disturbed by the lines at $N=10,11$, and 13 , which we graded as yww but wore given as g , ys, and In respectively by Gronvold and Rost. Since the 311 line at $\mathrm{N}=11$ is taken as the strongest on PDF Card 11-508, our earlier failure to identify palladseite is explained. We therefore took the additional Gandolfi photographs of graine nounted at random but only on one of these did the intensities of these lines rise above y , whereas the line at $\mathrm{N}=14$, graded as 8 by Gronvold and Rost, always lay in the range ms to 브 in our patterne.

Fig. 2 shows structure factow obtained in the usual way from visual estimates of the blackening of all spots on our hick Weissenberg photograph out to $\#=36$, plotted with a line of unit slope on a $\log -10 \mathrm{~g}$ scile versus the corresponding atructure factors of Geller. We have evidently underestimated the blackening of three very strong spots and onf very weak one but there is, in general, good agreement between our values and those of Geller, showing that palladseite is isostructural as well as isomorphous with $\mathrm{Pd}_{17} \mathrm{Se}_{15}$ and particularly that the intensity of the 311 apot agrees with Geller's value. Discrepanciea in fig. 1 are therefore artefacts and we offer in Table V powder data for palladseite, taken from Gronvold and Rost (1956). The intensity differences are not thougit to be caused by copper aubatituting tor some of the palladium in palladseite.
Synthetio palladium selonideg. Palladium selonide precipitated from a solution of a palladous salt anaiyses at stqghiometric PdSe, but has not been examined by X-ray diffraction. Rystor (1896) and Taimni and Rakshpal (1961) yound the precipitate reasonably stable but Moser and Atymski (1925) note that it cannot be heated or dried without decomposition. Gronvold and Rost (1956) heated an alloy of composition PaSe in an evacuated silica capsule at $500-800^{\circ} \mathrm{C}$ and found that it then gave a dominantly cubic X-ras powier pattern close to that of "Rh $9_{8} \mathrm{~S}_{8}{ }^{\mathbf{\prime \prime}}$ " together

1. This compound was later shown to be $\mathrm{Hh}_{17} \mathrm{~s}_{15}$, isoatructural with palladseite
with the strongest lines of PaSe_{2}. After adding sufficient palladium to bring the composition to $\mathrm{Pd} 1.1^{\mathrm{Se}}$, the alloy was reheated at $600^{\circ} \mathrm{C}$ when it gave the powder pattern of the pure cubic phase with a density of $8.30 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ and $\underline{a}=10.604 \mathcal{R}_{\text {. }}$ For an assumed formula of $\mathrm{Pd}_{9} \mathrm{Se}_{8}$ unit cell contents are

中ABLE V. X-ray powder data for palladseite

N	d	I_{P}	I_{G}	N	d	I_{P}	I_{G}
4	5.29	VW	a	61	1.356	Ww	m
8	3.73	vw	a	62	1.346.	w	a
9	3.51	vw	-	64	1.334	W	a
10	3.34	5	vow	65	1.315	vw	a
11	3.18	ve	\%w	66	1.304	w	a
12	3.06	vw	W	67	1.295	v	ms
13	2.932	\pm	vw	68	1.284	w	${ }^{\text {nns }}$
14	2.827	s	vs	69	1.275	vw	a
17	2.563	vs	a	72	1.248	w	ms
18	2.491	m	*	74	1.1 .32	v	ms
19	2.426	10	s	75	1.224	vw	a
20	2.365	m	${ }_{\text {mw }}$	77	1.208	a	FWw
21	2,037	m	w	80	1.185	w	ve
22	2.261	vw	a	81	4.178	w	a
25	2.118	w	vvw	82	1.171	w	w
26	2.074	w	w	84	1.157	w	*
27	$2.03 ?$	vs	s	85	1.143	*	m
32	1.870	*	vos	88	1,130	Wr	W
33	1.842	vw	a	89	1.123	vw	wB
34	1.814	W	wB	90	1.117	vw	a
36	1.764	m	m	93	1.099	a	** ${ }^{\text {B }}$
37	1.739	vw	a	96	1.087	\square	ms
38	1.715	m	s	99	1.065	m	m
40	1.675	*	a	100	1.060	2	rowB
41	1.653	\cdots	*	106	1.029	w	${ }_{\text {a }}$
42	1.634	m	*	107	1.024	*	a
43	1.614	w	a	110	1.010	vw	a
45	1.578	w	ve	113	0.997	vw	mwb
48	1.528	vw	a	116	0.984	\pm	ms
50	1.497	w	7vo	122	0.959	W	mwB
52	9.468	w	vow	123	0.956	v	${ }^{\text {a }}$
57	1.404	vw	a	125	0.948	vw	nw ${ }^{\text {a }}$
58	1.391	vw	a	128	0.937	w	wB
59	1.379	s	m	139	0.926	,	mw ${ }^{\text {B }}$
$N\left(=h^{2}+k^{2}+1^{2}\right), d \AA$ and I_{p} taken from Gronvold and Rost (1956) I_{G} taken from a Gandolfi pattern of Grain 1 .						Plua 27 more lines to d 0.773 :	

Fig.3. Sketch of possible phese diagras for part or the Pd-Se system.
$\mathrm{Pd}_{33.7} 7^{50} 30.0$ or $2\left[\mathrm{~Pa}_{17}{ }^{\mathrm{So}} 15\right.$], confirmed by Geller (1962) from the orystal structure. Matthias and Geller (1958), working with chilled melte of composition $\mathrm{Pd}_{\mathrm{X}} \mathrm{Se}$ found that only the cubic pattern was obtained for $\mathrm{X}=1.0$, 1.1 , or 1.2 ; $\overline{\bar{I}} \mathrm{ik}$ Gronvold and $\mathrm{R}_{\mathrm{ost}}$ they found that for $\underline{x}=1.3$ or more, the powder pattern showed traces of $\mathrm{Fd}_{2.8} 8^{\mathrm{So}}$. Sehubert ot g1. (1957) gave cell dimensions for PdSe with the MiAg-type structure, finding it in -quilibrium with $\mathrm{Pd}_{17} \mathrm{Se}_{15}$ on one side and with $\mathrm{PaS}_{e_{2}}$ on the other. Phese observations can be reconciled by a phase diagram suah as that sketched in fig 3.

The unit-eell dimensions listed in Table IV show that for $\mathrm{Pd}_{17}{ }^{\mathrm{Se}}{ }_{95}$ three determinations in two different laboratories agree to within 0.002 , well within the exparinental errors. However the fourth result (by Schubert ot al., 1957) is significantly larger than the other three and agrees well with our reaults. We have indexed and extrapolated Gronvold and Rost's data independently and have checked the factor used to convert kX to $\mathrm{K}_{\text {; all }}$ figures in Table IV are accurate al claimed and the discrepancy must be explained by assuming $\mathrm{Pd}_{17} \mathrm{Se}_{15}$ is a nonstochionetric compound exhibiting a smadl range of compositions.

BIRLIOARADHY AND RGPERMACES

Berzelius (J.J.). Afh. Fys, Kemi, Mineral. 6, 42-144. In Swedish ; transi. in : Arn. Chim. Phys., 1818, 2, 160-180, 225-267, 337-365; J, Chem. Phys. (Schweigger). $1878,32,309-344,430-484 ;$ A 7 , Philos. 1819, (1), 13, 401-4,12 ; (i), 14, 97-105, 257-265, 420-427 ; (i), 15, 16-27 ; Ann. Mines, 1819, (i), 4, 301-316.
Eerzelius (J.J.). Acai, Hand1. Stockholm, 39, 13-22.
Zincken (C.). Ann. Phys. Cherl. (Poggendorff), 16, 491-4,98.
$\mathrm{F}_{\mathrm{sssle}}$ (H.). Ann. Chen. (Liebig), 480, 240-745.
Roessler (F.). Z. anorg. Chem., 2, 31-77.
Moser (L.) and Atynsky (K.). Monatsh. Chem., 24, 235-250.
Thomassen (L.). Z. phys. Chem., 2, B, 349-379.
Mellor (J. K_{o}). A Comprehensive Trettiss on Inorganic and
Theoretical Chenistry, (Longashs, London) 10, 801, 808.
Wohler (L.), Ewald (K_{f}) and Krall (H, G.). Ber. dtsch, cherr. Ges.. 66, B, 1638-1552.
Gmelin Handbuch der Anorganischen Chanie, (Verlag Chemie G.m.b.H., Berlin), 8 Auflage, System Numer 65, Palladium, 296-297.
Gronvold (F,) and Rost (E,). Acta Chem, Scand. 10,1620 -1634. _. Acta Cryst. 10, 329-331.
Schubert (K.), Ereimer (H.), Burkhardt (W.), Gunzel (E.), Haufler (R_{0}), Lukas (H.L.), Vetter (H.), Wegot (J.), and Wilkens (M*). Naturwiss., 崔, 229-230.
Anderko (K.), ed. The Conetitution of Binary Alloys, (2nd edition of M. Hansen's Der Aufbau der Zweistofflegierugen). (McGraw-HiLl. New York, 1958), 1125.
Matthias (3.T.) and Geller (S.). J. Phys. Chen. Solide, 4, 318-319. $I_{g n a t ' e v ~(E, S .) ~ a n d ~ P l a e k i n ~(I . N .) . ~ I s v . ~ V y s e h . ~ U a h e b n, ~ 2 a v e d . ~}^{\text {I }}$ Isvetn, Het., (1), 90-94. In Kissian ; of. Chem, Abatr. 1959, 53, 8986b.
Fizlipov (A, A.) and Strinnov (V, I.) . ibid., 2, (6), 55-64. In Rasaian ; ef. Chen, Abctr. 1961, 55, 1822d.
Kjekshus (A.). Acta Chem. Scand., 14, 1625-1626. Taimni (I.K.) and Rakshpal (R.). Anal. Chim. Acta, 25, 438-447. Kulifay (S.M.). J. Arm. Chem. Soc., 83, 4916-4919; of. U.S. Patent 3026175,1962 ; ef. Cher. Abstr. 1962, 52, P627e.

Elliott (R.P.), ed. First Suppipment to K, Anderko's The Constitution or Binary Alloys, (MoAraw-Hill, New York, (1965), 731.

Gronvold (F_{0}) and Rost (E_{*}), Acta Cryst. 12, p11-713.
Geller (s.). Acta Cryst. 32, 713-7?1.
 Zh. Neorg. Khim., 2, (3), 526-529. In Russien ; translation in Auss, J. Inorg. Chem., 1964, 2, 292-294.
Shunk ($F . A_{+}$), ed. Second Supplement to K. Anderko's 'The Constitution of Binary Alloys' (McGraw-Hill, New York, 1969), 609.

Dolivo-Dobrovol'skii (V.V.). Khim. Anal. Tsvetn. Redikh Metal., Akgd. Nauk SSSR, Sibirsk. Otd., Khime-Met. Inst., 14, -355. In Russian ; cf. Whem. Abstr. 4965, 63, 2668f.
Wright (iN.D.). The heasurement of colour. 3rd ed. (Hilger and Watte Ltd., London).
Greiver (T.N.). Tspetn, Metal., 38, (1), 28-33. In Russian ; English translation in Soviet Metals (New York), 1965, 27-32.
Raub (C.J.), Compton (V.B.), Geballe (T.H.), Matthias (B.T.), Maita (J.P.), and Hull (G.W.Jr). J. Phys. Chem. Solids, 26, 2051-2057.
Granvold (F), Weatrum (E.E.Jr) and Radebaugh (R.). J. Mien. Eng. Datt, 12, (2), 205-207.
Mason (P.K.), Frost (M.T.), and Reed (S.J.B.). Nat. Phys. Lat. I.M.S. Rep. 1.

Johan (2.), Picot (P.), Pierrot (R_{0}) and Verbeek (T.). Bull. Soc. fr. Mineral. Cristellogr. 93, 476-487.
Donnay (J.D.H.) and Ondik (H.). Crystal Data : Determinative Tables, 2, Itorganio Cpde., (3rd ed. J.C.P.D.S., U.S.A.), p.c. 310.
 32, 528-543.
Sowie (S.H.U.), Simpson ($\mathrm{P}_{\mathrm{*}} \mathrm{R}_{0}$) and Atkin (D_{*}). Fortschr. Mineral., 52, Spec. Issue : IMA - Papers 9th Meeting, Berlin Rogensburg, 1974, 567-582.

M14 A.Blasi: T-site occupancies in alkali feldspars

 For the eake of coneiseness and in oraer to earry out a general treat-

,
Achille Blasi
Istituto di Minerslogia, Petrografia e Geochimica
Università degli Stuai
Via Botticelli, 23 20133-Milano
Sumary. In order to estinate the P-site occupancies in alkali reldspax
from retined lattice constants, the involved method developed by Luth from refined lattice constants, the involved method developed by Luth (1974) for calculating the structural indicators $\Delta(b \mathrm{c}$) (Stewart and Ribbe,
1969; Etewart and Wright 19 L . 1969; Btewart and Wright, 19\%L; stewart, 1975), $\Delta(b * a *$) (Smith, 1968; 2974), and $\Delta(\alpha * \psi *)$ (Smith, 1968 ; 1974; Stewart and Ribbe, 1969; Stewart and Wright, 197^{4}; Stewart, 1975) from b and a, b^{*} and c^{*}, a^{*} and γ^{*}, respec-
tively, is reviewed. It is shown that this method furnishes approxinate values, which become less sccurate the closer the values of the indiestors concerned are to the central region of their range. The insccuracies intro duced by using this method can be several tens of times higher than the approximations with which the results are commonly written in the litersture.

As an alternative a new method of calculation is proposed which corresponds to a rigorous treatment. It can also be applied for calculsting
Smith's (1974) indicator or $b * e *$, involved in cell dimensions of perthit and anomalous specimens, from refined lattice constants $b *$ and $c *$. The calculation procedure for estimeting the appropriate error terms of all these indicstors is also given. As shl these calculations gre tedious and as these quantities are increasingly being uaed in common minerslogical and
petrological practice a conputer progran available in Fortran IV hes been petrologica

In alkali feldspar the indicators of structural state b (bo) (Stewart and Ribbe, 1969 ; Stewart and Wright, 1974 ; Stewart, 1975) añ $\Delta(\alpha * * *)$
(Smith, 1968 ; 1974; Stewart and Rivbe, 1969; Stewart and Wright, 1974 ; (Smith, 1968; 1974; Stewart and Ribbe, 1969; Stewart and Wright, 1974 ;
Stewart, 1975) permit an estimate to be nade of Bi, Al distribution amon the T-sites as well as a distinction between one- and two-step ordering se quences. In all circunstances in whinh it is convenient, indicator $\Delta(b c)$ can be substituted by indicator $\Delta(b * c *$) (Smith, $1968 ; 1974$ \}.

The yalue of $\Delta(b c)$ (or $\Delta(b * c \star$)) can be derived graphically for a given
vili feldspar from its position on the digaram b vs. e (or $b *$ wa, $a *$) With respect to the representative points of the end-members high-sanidine (HS), low-microcline (IM), low-albite (IA), high-albite (HA), which form an irregular quadrilateral (i). In a simils.r namer the value of $\Delta\left(Q_{*} * \gamma^{*}\right.$) can
(\dagger) For alkali feldspar end-member nomenclature see Smith (1974) and Ribbe
(1975). (1975).
be obtained graphicelly from the diagrain a* vs. r^{\star} with reference to the irregular quadrilateral having as vertices the same end-menkers used for
the be plot, except HS, which is substituted by the end-member $1 / F$ (ronoclinic feldapar

Luth (19 ${ }^{\circ}$ h) has pointed out the disadvantages of this procedure and consequently has proposed an analytical method of calculation.

Since this method appeared approxinete when first examined, the present of Luth's (1974) methoa snd to deviss a new calculstion procedure corresponding to a rigorous treatment, which can also be applied for calculating Smith's (1974) indicator Op(b*e*」 from refined lattice constants b* and o* In addition, it was thought appropriate to provide a calculetion procedure
for estimating the error terms of all these indicators. for estimating the error terms of all these indicators.
Besic features. According to the well-known assumptions that form the basis for the Ribbe-Stewart-Wrigit interpretation of variation in unit cell pa-
 (*) Smith (1974) normalizes the indicator $\Delta(b * e k)$ between O and 1 .
the sides HS-IM and HA-IA of the quadrilateral HS-IM-LA-HA on the ba plot, while there is a continuous end uniform variation of $\Delta(\alpha * \gamma()$ walues included between 0 and 1 an the a*Y* plot along the sides MF-LM and HA-LA of
the quadrilateral MF-[MA-LA-MA. In both coses, the quadrilatersls can be contoured linearly by iso- $\Delta(b)$ end isa- $\Delta\left(\alpha \pi \gamma^{*}\right)$ straight lines respectively.
The indiaators of structural state $\Delta(b c)$ (or $\Delta\left(b * c^{*}\right)$) and $\Delta(a * \gamma *)$ estitate sum and difference, respectively, for $A l$ content of X^{2}-sites $T_{1} 0$ and $T_{1} m$. Consequently, as $t_{1} \mathrm{O}+t_{1}{ }^{m a+t_{2}} \mathrm{O}+t_{2} m=1$, it is possible to oftain the values or $t_{1} 0, t_{1} m, t_{2}$ and $t_{\text {an }}$ which, according to Kroll's (1971) notation, spectively. . Some cavcets have been mede regarding use of this procedure, particu
larly by Luth (1974), Salith (1974), and Stewart and wright (1974); but Stevart (1975) points out thet, for practical purposes, this interpretation of the available date is adequate for every geologicel problem and matural specimen and also for almost all known sophisticated mineralogical

Smith (1974) has pointed out that one can elso derive indicetor ox (b*e*) from the quadrilateral HS-LM-LA-HA plotted on the $b * \omega^{*}$ plot. Smith (1974) fixes a continuous and uniform conventional variation of or (obe)
values ranging from 0 to 1 alone the sides HA-HS and LA-M, and further values ranging from to 1 along the sides HA-HS and LA-M, and further
contouns the quadrilateral linearly by iso-Oritac contours the quadrilateral linearly by iso-orib*c*) straight lines. The in-
dicator O or $b \star c \star$, can be used in a diagran versus $a *$, which is involved in dicator or $\left(b \star_{c} \star\right.$) can be used in a diagran versus $a \star$, when
cell dimensions of perthites and anomalous specimene.

Fig. 1. Plot of ay the reference quadrilatersi in recommended orienon (b*e*) in aikali feldspar.
ment, let us consider, instead of the rectangular systems ba (or $b * o *$) an a*y*, a single rectanguar systien of axes ay along which the (frome origin toward the right and upard (fig. 1). The end-members HA, HS (or MF), IA, LM are labeled uith the notations $P_{\lambda}, P_{2}, F_{3}, P_{4}$, respectively; a seneric value of the indicators Δ (bc) (or
$\Delta(b * e * j)$ and $\Delta(\alpha * \gamma *)$ is indicated by the notation Δ; the extreme velues of $\Delta(b * a *)$ and $\Delta(\alpha * \gamma *)$ is indicated by the notation Δ; the extreme velues of
these indicators are labeled $w i t h$ the notations A_{12} and $\Delta_{3} h$. In a simiar its extrene values are labeled with $0{ }^{2}$
In the quedrilateral $P_{1} P_{2} P_{3} P_{4}$ the locus or points of equal A (or Or) is represented, for each given vaiue of Δ (or Or), hy a straight line which intersects sides $P_{1} P_{3}$ and $P_{2} P_{2}$ (or $P_{1} P_{2}$ and $P_{3} P_{4}$) at the two points characterized by that given value of a (or or).
If the values of Δ_{12} and Δ_{34} (or $O_{13} 13$ and O_{2}) and those of the quadilateral vertex coordinates are known, it is possible to calculate the corresponding value of A (or O) for each point $f(x, y)$ of the quadrilater
1, assuming coordinates x and y are known.
The reference velues of the vertex coordinates of the quadrilaterals,
olved in the calculations, have been chosen taking gocount of the unit ell dimensions of the extreme end-members of synthetic and natural alkal feldspars and siso of their experimental uncertainties. Gubser and Leves (1967), Stewart and Ribbe (1969), and Luth (1974) have proposed reference values for these vartices but only with respect to some unit cell parame-date reference values for all unit cell dimensions both direct and reciprom date
cal.
 $\Delta(b e)$ and $\Delta r a+\gamma * j$ respectively by meens of the values of the unit cell dimersions in alkali feldspar end-members proposed by stewart and Ribbe
(1969). This author has moreover given a formula for calculating $\Delta\left(b * c^{*)}\right.$ by (1969). This author has moreover given a formula for calculating Δ onc*) by
means of values of b^{*} and c* for alkeli feldepar end-nembers that he has prans of values himself.
Luth subsequently recnlculated the equations of $\Delta(b c)$ and $\Delta\left(a^{*} \gamma^{*}\right)$ using the new lattice-constent values for alkali feldspar end-members proposed by Stewart and Wright (1974). These formulae were published in the paper of Stewart and Wright (1974).
As Iuth (1974) hes not explained the method he used to obtain his formolae, it may be assumed that in the plane $x y$ there is a family of straight
lines of the type:

$$
\left(\lambda^{\prime}-\Delta \lambda^{\prime \prime}\right)_{x}+\left(\mu^{\prime}-\Delta \mu^{\prime \prime}\right) y^{\prime}+\left(\nu^{\prime}-\Delta \nu^{\prime \prime}\right)=0 \text {. }
$$

Each straight line is characterized by one value of Δ. The correspond ing value of Δ at each point $P(x, y)$ can be determined if the coefficients $\lambda^{\prime}, \lambda^{\prime \prime}, u^{\prime}, u^{\prime \prime}, v^{\prime}, v^{\prime \prime}$ are known. However one can determine only four of $P_{1} P_{2} P_{3} P_{4}$; two coefficients are thus arbitrary. If one lets one of these Aqual to eero and the other equel to 1 , one arrives at a form that enables the expressions given by tuth to be obtained. In particular they are derived by lettirg $\mu^{\prime \prime}=0$ and $y^{2}=1$. In this nypothesis one obtains the relationship:

$$
\Delta=\left\langle v^{\prime}+\lambda(x+y) /\left(v^{\prime \prime}+\lambda^{\prime \prime}(z)\right.\right.
$$

Which reproduces the form of Luth's equations. It should be borne in mind that in (1) one must replace x by b, b^{*}, or γ^{*} and y by o, e*, or a^{*}. The ous equations:
$\begin{array}{ll}\Delta_{12} v^{\prime \prime}+\Delta_{12} \lambda^{\prime \prime} x_{1}-v^{\prime}-\lambda^{\prime} x_{1}-y_{1}=0 ; & \Delta_{12} v^{\prime \prime}+\Delta_{12} \lambda^{\prime \prime} x_{2}-\nu^{\prime}-\lambda^{\prime} x_{2}-y_{2}=0 ; \\ \Delta_{34} \nu^{\prime \prime}+\Delta_{34} \lambda^{\prime \prime} x_{3}-v^{\prime}-\lambda^{\prime} x_{3}-y_{3}=0 ; & \Delta_{3} 4^{\prime \prime}+\Delta_{34} \lambda^{\prime \prime} x_{4}-v^{\prime}-\lambda^{\prime} x_{4} y_{4}=0 ; ~(2)\end{array}$
$\Delta_{34} v^{\prime \prime}+\Delta_{34} \lambda^{\prime \prime} x_{3}-v^{\prime}-\lambda^{\prime} x_{3}-y_{3}=0 ; \quad \Delta_{3} 4^{\prime \prime \prime}+\Delta_{34} \lambda^{\prime \prime} x_{4}-v^{\prime}-\lambda^{\prime} x_{4}-6 y_{4}=0 ;$
For this purpose a Fortran IV program has been prepared, which also permits structural indicators Δ to be conputed. Bo, by plecing in (2) the values of the direct or reciprocal lattice constants for sikali feldspar end-members used by Luth, it has been possibie to obtain values of the coerficients λ^{\prime}, $\lambda^{\prime \prime}, v^{\prime}, v^{\prime \prime}$, identical to those appearing in the various formulae calculate
by Luth.

By using the vertex coordinates proposed by Smith (1974) for the quad rilaterals
$\Delta(b c)=(-0.66437-0.494547 b+c) /(1.94220-0.138549 b) \quad$ (3)
$\Delta(b \star c *)=(0.008736-2.15049 b *+c \star) /(0.003466-0.09739 b *) \quad$ (4)
$\Delta\left(a * \gamma^{*}\right)=\left(88.683-1.98537 \gamma^{*}+a * / /(-22.553+0.19942 \gamma *) \quad\right.$ (5)
limits of $\Delta(b * c \star)$ ranging between 0.5 and 1 have been used to calculate equation (4).

Rigorous treatment.

Calculation of Δ. In order to calculate the vilues of the indicators Δ is is necessary to know and solve with respect to \& the equatron of laterel $P_{1} P_{2} P_{3} P_{4}$ (fig. 1). The straight line $\left(x-x_{1}^{\prime}\right) /\left(x_{2}^{\prime}-x_{1}^{\prime}\right)=\left(y-y_{1}^{\prime}\right) /\left(y_{2}^{\prime}-y_{1}^{\prime}\right)$
intersects
$5 i d e s$
$P_{1} P_{3}$ and $P_{2} P_{2}$ respectively at the points $P\left(x^{\prime}, y_{1}^{\prime}\right)$ and intersects sides $P_{1} P_{3}$ and $P_{2} P_{4}$ respectively at the points $P_{1}^{\prime}\left(x_{1}^{\prime}, y\right)$, and ${ }^{2}$ ($x_{2}^{\prime}, H^{\prime}$), and if the coordinates of the points F_{1}^{\prime} and P_{2}^{\prime} are expressed as functions of $\Delta_{0}, \Delta_{12}, \Delta_{34}$ an
deduce the quairatic form:

$$
A \Delta^{2}+B A+C=0
$$

where: $A=\left(x_{4}-x_{2}\right)\left(y_{3}-y_{1}\right)-\left(x_{3}-x_{1}\right)\left(y_{1}-y_{2}\right)$,
$B=\left(\Delta_{34}-\Delta_{12}\right)\left\{x\left[\left(y_{4}-y_{3}\right)-\left(y_{2}-y_{1}\right)\right]-y\left[\left(x_{4}-x_{3}\right)-\left(x_{2}-x_{1}\right)\right]\right\}+\left(\Delta_{34}+\Delta_{12}\right)\left(x_{1} y_{2}-x_{3} y_{2}+\right.$ $\left.+x_{2} y_{3}-x_{1} y_{4}\right)-2 A_{34}\left(x_{2} z_{1}-x_{1} y_{2}\right)-2 A_{12}\left(x_{4} / 3_{3}-x_{3} y_{4}\right)$, $c=\Delta_{34}^{2}\left[x\left(y_{2}-y_{1}\right)-y\left(x_{2}-x_{1}\right)+\left(x_{2} y_{1}-x_{1} y_{2}\right)\right]+\Sigma_{12}^{2}\left[x\left(y_{4}-y_{3}\right)-y\left(x_{4}-x_{3}\right)+\left(x_{4} y_{3}-x_{3} y_{4}\right)\right]-$ $-\Delta_{12} \Delta_{3}{ }^{[x}\left[\left\{\left(y_{4}-y_{3}\right)+\left(y_{2}-y_{1}\right)\right]-y_{1}\left[\left(x_{4}-x_{3}\right)+\left(x_{2}-x_{1}\right)\right]+\left\{x_{4} y_{1}-x_{3} y_{2}+x_{2} y_{3}-x_{1} y_{4}\right)\right]$. Fron an examination of the coefficients of equation (6) it will be seen hast, in particular, the condition A-0 expresses the paralielism of the this condition were satisfied equation (6) would reduce to the first degree. $A s$, in fact, $A \neq 0, \Delta=\left\{-g_{ \pm}\left(b^{2}-4 A C\right) / 2 A\right.$, which in prsctice gives two real and unequal solutions one of which is included in the range between 12 and Δ_{34}, and of course is the solution to accept. With the orientation the rectangular system ary as previously defined, it has been verified that, of the real and unequal solutions furnished by (6) the aolutions of root, wheress to arrive at $\Delta(b * e *)$ the negative of the square root has to be used.
Catculation of Or. In addition to a straight line iso- A, a stralent line iso-Cr also passes through each point $F(x, y)$ of the quadrilateral $P_{1} P_{2} P_{3} P_{4}$
(fig. 1). The equation of the straight line iso-O that passes through
(x, y) and intersects sides $F_{1} P_{2}$ and $P_{3} P_{4}$ at the points $P_{3}\left(x x_{3}, y \frac{3}{3}\right.$) and
$\mathrm{P}_{4}\left(x_{4} y_{4}^{2}\right)$ respectively is $\left(x-x_{3}\right) /\left(x_{4}-x_{3}\right)=\left(y-y_{3}\right) /\left(y_{4}-y_{3}\right)$. Or, $\mathrm{Or}_{13} \mathrm{Or}_{24}$ and of the coordinates of the quadrilateral vertices, we orrive at a quadratic form with respect to on

Table 1. $\Delta(b c)$ waluee of hypothetical alkali feldspars.

$\begin{array}{llllllllllllllll}12.7861 & 7.1584 & 1.000 & 1.000 & 12.8749 & 7.1900 & 1.000 & 1.000 & 22.9631 & 7.2214 & 1.000 & 1.000 \\ 12.7960 & 7.1540 & 0.950 & 0.953 & 12.8830 & 7.1855 & 0.950 & 0.953 & 12.9667 & 7.2158 & 0.950 & 0.953\end{array}$ $12.79607 .15400 .9500 .953 \quad 12.8830 \quad 7.1855 \quad 0.950 \quad 0.953 \quad 12.9667 \quad 7.2158 \quad 0.950 \quad 0.953$ $\begin{array}{llllllllllllllllllllllll}12.8165 & 7.1455 & 0.850 & 0.858 & 12.8992 & 7.1765 & 0.850 & 0.857 & 12.9830 & 7.2079 & 0.850 & 0.856\end{array}$
$12.8223 \quad 7.1396 \quad 0.800 \quad 0.809 \quad 12.9033 \quad 7.17050 .800 \quad 0.808 \quad 12.9870 \quad 7.2024 \quad 0.800 \quad 0.807$ $\begin{array}{lllllllllllllll}12.8308 & 7.1347 & 0.750 & 0.759 & 12.9110 & 7.1658 & 0.750 & 0.758 & 12.9921 & 7.1973 & 0.750 & 0.758 \\ 12.8411 & 7.1305 & 0.700 & 0.709 & 12.9231 & 7.1629 & 0.700 & 0.708 & 13.0026 & 7.1943 & 0.700 & 0.707\end{array}$ $\begin{array}{llllllllllllll}12.8481 & 7.1250 & 0.650 & 0.658 & 12.9259 & 7.1563 & 0.650 & 0.657 & 13.0062 & 7.1886 & 0.650 & 0.657\end{array}$
 $12.87657 .11150 .500 \quad 0.500 \quad 12.9520 \quad 7.1436 \quad 0.500 \quad 0.500 \quad 13.0263 \quad 7.17520 .500 \quad 0.500$
(\dagger) With reference to the quadmitateral $E S-L M-L A-H A$ (see tent).
(\#) Caloulated from squation (6).
(i) Caloulated from equation (3).

$D O r^{2}+E O r+F=0$

(7)
where: $D=\left(x_{4}-x_{3}\right)\left(y_{2}-y_{1}\right)-\left(x_{2}-x_{1}\right)\left(y_{4}-y_{3}\right)$,
 $\left.-x_{2} y_{3}-x_{1} y_{4}\right)-20_{2} r_{24}\left(x_{3} y_{1}-x_{1} y_{3}\right)-20 x_{13}\left(x_{4} y_{2}-x_{2} y_{4}\right)$,
$F=\operatorname{Or}_{2}^{2} \tilde{2}_{4}\left[x\left(y_{3}-y_{1}\right)-y_{1}\left(x_{3}-x_{1}\right)+\left(x_{3} y_{1}-x_{1} y_{3}\right)\right]+\operatorname{Or}_{1}^{2}\left[x_{1}\left(y_{4}-y_{2}\right)-y\left(x_{4}-x_{2}\right)+\left(x_{4} y_{2}-x_{2} y_{4}\right)\right]-$
$\left.-\mathrm{or}_{13} O \mathrm{r}_{24}\left(x\left[\left(y_{4}-y_{2}\right)+\left(y_{3}-y_{1}\right)\right]-y\left[\left(x_{4}-x_{2}\right)+\left(x_{3}-x_{1}\right)\right]+\left(x_{1}\right)_{1}+x_{3} y_{2}-x_{2} y_{3}-x_{1} y_{4}\right)\right]$.
As in practice $D f 0$ (i.e., the quadrilaterel sides $P_{1} P_{2}$ and $P_{3} P_{4}$ are not parallel), $h^{\prime \prime}=(-E \pm(E 2-4 D F)) / 2 D$, which gives two real and unequal solutions one of which falls in the interval between Or_{13} and $0 \mathrm{~m}_{2}$, With to accept
ined, it hes orientation of the quadrilateral $P_{1} p_{2} P_{3} P_{4}$ as previousiy de olutions, the value of Or (b*ct) to accept, is that obtained with the posi solutions, the value of or(b*c*) to a

Conclusions.

Using the reference values proposed by Smith (1974) for alkali feldspar nd-members, the differences between the results obtained by means of and those darize in tables I and TT Table I provined in the present paper are summarized in tables of values of 4 (be) calculsted by means of equations (3) and (b) for three different fields of the quadrilateral $H S-L M-L A-H A$. Field T. is located about the quadrilateral side HA-LA, field II about the straight line intersecting the midale of the sides HA-HS and IA-LM, field III about the side S-LM. Table II showe a set of values of $\Delta(\alpha * Y *)$ calculated by neans equations (5)

Comparison of the reoults furnished by the two procedures shows that: the values obtained with (3) and (5) and those obtained with (6) only coincide at each extreme of $\Delta(b a)$ and $\Delta(a \star \gamma *)$, the greatest differences found
among the values cbtained are, in $\Delta(b o)=0.75$ end in $\Delta(a * y *)=0.50$; these anong the values obtained are, in $\Delta(b o)=0.75$ and in $\Delta(\alpha+\gamma *)=0.50$; these afferences graducliy diminish s.s the extrenes of Δ are approached; they are in all cases greater in the values of $\Delta\left(a * y^{*}\right)$ than in the values of
$\Delta(b a)$; and for a given $\Delta(b c)$ the differences detween the values obtained from (3) and (6) decrease slightly in a systematic way from field I to field III. reater and smaller respectively than those calculated by meens of (6), subdivision of the quadrilaterals HS-LM-LA-HA and MF-IM-LA-HA by neans of iso-A straight lines aflculated from (3) and (5) and from (6) gives rise to the results displayed in figs. 2 and 3.
In conclusion, the equetions devised by Luth (19pl) for calculating the
stuctural indicators $\Delta(b o)$, $\Delta\left(b *_{o}\right)^{*}$, Δ ($\alpha * \gamma^{*}$) of alkali feldepar furnish values that become farther from the true ones the closer the values of these indicators are to the central region of their rarige
As results are commonly rounded off until they contain three (cr. Crosby, 1971; Guidotti, Herd, and Tuttle, 1973; Martin, 1974; Stewart and Tright, 2974; Stewart, 1975; Delbove, 1975; Basu and Vitaliano, 1976) or
four decimal places (cf. Luth, Martin, ana Fenn, 1974), it also seems

Fig. 2. Plot of bo of alkali felaspar using end-member coordinates for high-tanidine (HS), low-microcline (IM), low-albite (IA), and high-albite (HA) as given by smith (1974). The quadrilateral, contoured for $t_{1} 0+t_{1} m$, shows the aifferences between the straight lines representing the $\Delta(b o)$ values calculated from equation (6) (solid lines) and those obtainsble from equation (3) (dashell lines).

Table II. $\Delta\left(\alpha{ }^{\star} \gamma^{*}\right)$ values of hypothetical alkali fetdspars
Fietd I (+)
Eield II (\dagger)
Field IIT (\dagger)

$86.44390 .4801 .0001 .000 \quad 88.36491 .3591 .0001 .000 \quad 90.33992 .2631 .0001 .000$ $\begin{array}{llllllllll}86.435 & 90.247 & 0.900 & 0.890 & 88.438 & 91.173 & 0.900 & 0.890 & 90.296 & 92.032 \\ 86.353 & 9.900 & 0.890\end{array}$ $\begin{array}{lllllllllllllllllll}86.353 & 89.980 & 0.800 & 0.783 & 88.240 & 90.861 & 0.800 & 0.783 & 90.250 & 91.800 & 0.800 & 0.783\end{array}$
$86.26089 .4790 .600 \quad 0.575 \quad 88.159 \quad 90.3830 .600 \quad 0.575 \quad 90.22091 .3650 .600 \quad 0.575$ $\begin{array}{lllllllllllll}86.254 & 89.248 & 0.500 & 0.474 & 88.234 & 90.200 & 0.500 & 0.474 & 90.145 & 91.139 & 0.500 & 0.474\end{array}$

$\begin{array}{llllllllllll}86.161 & 88.747 & 0.300 & 0.378 & 88.159 & 89.726 & 0.301 & 0.278 & 90.079 & 90.667 & 0.300 & 0.279 \\ 86.081 & 88.480 & 0.200 & 0.184 & 87.981 & 89.420 & 0.200 & 0.184 & 90.003 & 90.420 & 0.200 & 0.184\end{array}$ $\begin{array}{lllllllllllll}86.081 & 88.480 & 0.200 & 0.184 & 87.981 & 69.420 & 0.200 & 0.184 & 90.003 & 90.420 & 0.200 & 0.184 \\ 86.081 & 88.253 & 0.100 & 0.091 & 88.059 & 89.240 & 0.100 & 0.091 & 89.982 & 90.200 & 0.100 & 0.091\end{array}$
 (\dagger) With reference to the quadritateral MP-iM-LA-HA (see text).
(") Calculated from equation (6).
worthwhile pointing out that the inaceuracies introduced by using Luth's equations can be several tens of times higher than the approximations with thit
tructural indicators $\Delta(b c), \Delta(b * c \star\}, \Delta(a * \gamma *)$ and 3 mitn's (1974) indicator Or ($b * c^{*}$) entail tedious computations. As these quantities are being in areasingly used in common mineralogical and petrological practice, a computer program available in Portrarr iv has aiso been prepsred, which permite these indicators and theiri respective variances to be calculated. The cal culation procedure for the variances is given in the attached Appendix.

Appendix

Eatimate of erpor terms. The error terms in $\Delta(B), \Delta(b * e *), \Delta(\alpha * \gamma *)$ and $P(x, y)$, the A (or 0 or) velue and the error in $\Delta(o r o r)$ of which it is de sired to know, is at a center of a rectongle whose sides are $2 \sigma(x)$ ind eo(y) respectively. Anong the iso- 4 (or iso-0p) straight lines passing through the four vertices, two touch the rectangle uithout intersecting it they are the furthest from the iso- Δ (or iso-(r) straight line passing through the center and furnish two differences with respect to the Δ (or
Or) value of this last line. The highest of these differences represente Or) value of this last line. The highest of these differences represents
the error tern in Δ (or O) determined graphically (These two differences the error term in Δ (or Cr_{2}) det

The values of the errors determined graphically, in the particular quedrileterals considered, coincide in practies with those derived from the $o(\Delta, O x)=|[\partial(\Delta, O x) / \partial x] \sigma(x)|+|[\partial(\Delta, O n) / \partial y] \sigma(y)|$ (8)

Which represents, spart fron the absolute value symbol, the total differen-
tial of Δ (or or) and furnishes the maximun error in the ebsence of any As the quadrilaterals
a graphicel nethod is very time-c are irregular, estimating error terms by which, as we have seen, csn be too high
of the the of peasons, it is better to calculate these error terms by means of the Law of propagation of Errors, according to which, in general, the veriance ${ }^{2}(f)$ of a function f of p,

$$
\begin{equation*}
\sigma^{2}(f)=\sum_{r=1}^{p} \sum_{r=1}^{p}\left(\left.\frac{\partial f(\Xi)}{\left.\partial \xi_{1}\right)}\right|_{E=\Sigma}-\left.V_{r s} \frac{\partial f(\Xi)}{\partial \xi_{s}}\right|_{\Sigma=\Xi}\right\} \tag{9}
\end{equation*}
$$

where $V_{r o}$ is the variance-covariance matrix of the parameters ξ_{p}, and $\Xi^{\top}=\xi_{1}, \xi_{2}, \ldots, \xi_{p}$ represent the true values of $\bar{z}=\xi_{1}, \xi_{2}, \ldots, \xi_{p}$. In prar should alweys ensure that the fy truncstion of the Taylor expansion of f(E) abcut the point $\overline{=}=$, , the first order in ($\xi_{2_{2}}-\xi_{2}$) (Martin, 1971). Error texns in Δ. On spplying (9) er
following formula
$\sigma_{1}^{2}(\Delta)=(\partial \Delta / \partial x)^{2} V_{m m n}+(\partial \Delta / \partial y)^{2} t_{m n}+2(\partial \Delta / \partial x)(\partial \Delta / \partial y) V_{m m} \quad$ (IO)

Fig. 3. Plot of $\alpha \star{ }^{*}$ of alkali feldspar using the reference points for nolbite (HA As $t_{1} 0-t_{1} m$, shows the differences between the straight lines of the Δ ($\alpha * y *$) values calculable from equation (6) (solid lines) and those obtainable from equation (5) (dashed lines).
tined from reciprocal or direct lattice constant variance-covariance diato whether Δ is a function of the edges or of the unit ceil argles. Furthermore:
$\partial \Delta / \partial x=-(1 / \partial A)(\partial B / \partial x) \pm\left[1 /\left(B^{2}-4 A C\right)\right)((B / 2 A)(\partial B / \partial a)-(\partial C / \partial x)]$ (11) $\partial B / \partial x=\left(\Delta_{3} 4-\Delta_{12}\right)\left(y_{4}-b_{3}-y_{2}+y_{1}\right)$
$\partial C / \partial x-\Delta_{34}^{2}\left(y_{2}-y_{1}\right)+\Delta_{12}^{2}\left(y_{4}-y_{3}\right)-\Delta_{12} \Delta_{34}\left(y_{4}-y_{3}+y_{2}-y_{1}\right)$
$\partial A / \partial y=-(1 / 2 A)(\partial B / \partial y) \pm\left[1 / /\left(B^{2}-+A C\right)\right][(B / 2 A)(\partial B / \partial y)-(\partial C / \partial y)]$ (12)
$\partial B / \partial y=-\left(s_{34}-\Delta_{12}\right)\left(x_{4}-x_{3}-x_{2}+x_{1}\right)$
$\partial \subset / \partial y=-\Delta_{34}^{2}\left(x_{2}-x_{1}\right)-\Delta_{12}^{2}\left(x_{4}-x_{3}\right)+\Delta_{12} \Delta_{34}\left(x_{1}-x_{3}+x_{2}-x_{1}\right)$
Equations (17) and (12) must be used with the positive sign or the negative sign according to whether the value of Δ accepted has been obtained
from (6) with the positive or negative square root of the discrininant. from (6) with the positive or negative square root of the discriminant.
variance and covariance terms required to solve equation (10) are usu-
y availeble on the output of the lattice constant refinement programs. ally avalieble on the output of the lattice constant refinement programs. that, as far as unit cell angles are concerned, computer prograros usually furnish variance and covarisnce values in rad ${ }^{2}$ and standard deviation values, i.e. the square root of the variances, in degree.
If on applying (9) one essumes that the errors are uncorrelated, i.e. $\operatorname{oov}\left(\xi_{p}, \xi_{\beta}\right)=0$, then

The values of the standard deviation given by (10) are generally slightly greater than those furrished by (13), but in both cases are smaller than those obtsined graphically.
Error terme in or. The standard deviation ofor) of or (b*c*) can be calculated in a similar way to that of A by means of the Law of Propagation of Errors:
$\sigma^{2}(\partial r)=(\partial O n / \partial x)^{2} V_{n m m}+(\partial O n / \partial y)^{2} V_{n n}+2(\partial O x / \partial x)\left(\partial O_{r} / \partial y\right) V_{m n} \quad$ (14)
where $V_{m y n}, V_{n n}, V_{m n}$ have been previously defined. In this case, the subscripts m and n of course assume values 2 and 3 in the reciprocal lattice constant variance-covariance matrix. Moreover
$\partial O P / \partial x=-(1 / 2 D)(\partial E / \partial x) \pm\left[1 / V\left(E^{2}-4 D F\right)\right][(E / 2 D)(\partial E / \partial x)-(\partial F / \partial x)]$ (25$)$ $a E / \partial x=\left(O_{2} 2_{24}-0 x_{13}\right)\left(y_{4}-y_{3}-y_{2}+y_{1}\right)$
$\partial F / \partial x=0 r_{2}^{2} L_{1}\left(y_{3}-y_{1}\right)+0 r_{13}^{2}\left(b_{4}-y_{2}\right)-O r_{13} O_{24}\left(y_{4}+y_{3}-y_{2}-y_{1}\right)$
$\partial 0 \mathrm{r} / \partial y=-(1 / 2 D)(\partial E / \partial y) \pm\left[1 /\left(\left\langle E^{2}-4 D E\right)\right][(E / 2 D)(\partial E / \partial y)-(\partial F / \partial y)]\right.$ (16) $\partial E / \partial y=-\left(O_{24}-x_{13}\right)\left(x_{4}-x_{3}-x_{2}+x_{1}\right)$
$2 F / \partial y=-O_{2}^{2}{ }_{2}^{2}\left(x_{3}-x_{1}\right)-$ Or $_{13}^{2}\left(x_{4}-x_{2}\right)+O_{13}$ Or $_{24}\left\langle x_{4}+x_{3}-x_{2}-x_{1}\right)$
When applying (14), it should be noted that double signs must be used in expressions (15) and (16) in a similar way to those used in calculating the errors in 0 . If one assumes that the errors are uncorrelated the cross product of equation (14) becomes zero.
Acknowledgments. I wish to thank Frof. Joseph V. Smith for his encourage ment and advice, and Prof. Giueeppe Schiavinato for valuable suggestions.

Financial support was provided by C.N.R. (Italian National Research Coun-
cil). All computations were carried out on an Univac 1106 computer at the Milan University Computer Center.

References.

Basu (A.) and Vitaliano (C.J.), 1976. Sanidine froan the Mesa Falls Tuff, Ashton, Idaho. Am. Mineral. 61, Lo5-8.
Crosby (P.), 1971. Composition anत्ं structural state of aikali feldapers from chsrnockitic rocks on Whiteface Mountain, New York. Am. Mineral.
56, 1788-811.
elbove (F.), 1975. Excess Gibbs energy of microcline-low albite alksli reldspars at $800^{\circ} \mathrm{C}$ and 1 bar, based on fused alkali bromide ionexchange experiments. Am. Minarat. $60,{ }^{972-84 .}$
Guidotti (C.V.), Herd (H.H.), end Iutti
(C.L.), 1973. Composition and structural state of K-feldspars from K-feldspar + sillimanite grade rocks in northwestern Maine, Am. Mineral. $\frac{58}{}, 705-16$.
Gubser (A.) and Leves (F.), 1967. On X-ray properties of "adularia", (K, Ma) $41 \mathrm{Si}_{3} \mathrm{C}_{8}$. Sompeia. Mineraz. Petrogr. Mitt. 47, 177-88.
Kroll (H.), 1971. Determination of Al,si distribution in alkali feldspars from X-ray powder data. Neuee Jahrb. Mineral., Monatsh. 91-4.
Luth (W.C.), 1974. Analysis of experimental data on alkali feldspars: unit cell parameters and solvi. In MacKenzie (W.S.) and Zussman (J.), eds. The feidepare: Proceedinga of a NAvo Advanoed Stuxy Institute (Monchester 11-21 July 1978). (Manchester University Prese. Crene Russak \& Company, Inc., New York). 249-96.
Martin (R.F.), and Fenn (F.M.), 19T4. Peralkaline alksli feldspar
sonvi. Tbid. 297-312.
Gartin (R.F.), 1974. The alkgili feldspar solvus: the case for a rirst-order break on the K-limb. Buil. Soc. fs. Mineral. Crist. 䞎, 346-55.
Smith (J.V.), 1968. Cell dimensions $b \star_{3} c^{*}, ~ a *, \gamma^{*}$ of alkali feldspars permit qualitativa estimates of Si, Al ordering: albite ordering process (abstr.). Geol. Soc. Am. Abstr. Erogr., Mexico City, 283. 1914. Feldspar Minerals. Vol. 1. Crystal Structure and Physical Proper-
ties. Springer-Verlag (Berlin).
tewart (D.B.), 1975. Iattice paraxeters, composition, and AL/Si order in akali feldspar. In Ribbe (F.H.), ed. Feldspar Mineralogb: Mineralogiat Society of America, Short Course Notes. Min. Soc. Am., Washington, D.C., pp. Stl-st2e.
and Ribbe (P.H.), 1969. Structural explanation for variation in cell parameters of slkali feldsper with al/si ordering. Am. I. S. 267-A,
-and Wright (T.L.), 1974. Al/Si order and symmetry of natural alkal feldspars, and the relationship of strained cell parameters to bulk composition. Butt. Soc. fr. Mineraz. Crist. 97, 356-7T.
Ribbe (P.H.), 1975. The chemistry, structure and nonenclature of feldspars In Ribbe (P.H.), ed. Reldspar Mineralogy: Mineralogical Society of Rl-R5? Short Coureg Notes. Min. Soc. Am., Weshington, D.C., Pp R1-R52.

J.F.W.Bowles : History of $\mathrm{Fe}_{3} \mathrm{O}_{4}-\mathrm{FeTiO}_{3}$ grains (App.)
 An estimation of the probable errors of the method of tracing the cooling

history of complex magnetite-ilmenite grains and a discussion of the results produced by using different methods of creatment of the minor elements contained in these minerals when using the Buddington and Lindsley (1964) geothernoneter.
(Appendix to "A method of tracing the temperature and oxygen-fugacity histories of complex magnetite-ilmenite grains'", this vol. Pp 103-109)

John FW Bowles
Department of Geology, University College London WCIE 6BT Present address: Institute of Geological Sciences, $64 / 78$ Gray's Inn Road London WCIX 8NG

Estimation of errors in the method of calculation used by Bowles (1977)
The formation of ilmenite from titanomagnetite frequently shows separate generations of exsolved ilmenite. Bowles (1977) used microprobe analyses of host magnetite and two generations of ilmenite with an estimate of the volume of each phase to derive compositions representing different stages in the cooling history of a complex magnetite ilmenite grain. Use of the Buddington and Lindsley (1964) geothernometer provided two points in the temperature and oxygen-fugacity history of the specimen. In this appendix a comparison of the errors of measurement is used to determine the likely errors in the result, to check the validity of that result.

The quantity of TiO_{2} in the titanomagnetite is directly related to the quantity of ulvospinel that is colculated. One standard deviation of the microprobe X -ray counts leads to an estimated error of $\pm 0.12 \% \mathrm{TiO}_{2}$ on the measured value of $8.07 \% \mathrm{TiO}_{2}$. This error encompasses the X -ray statistical variation and the mineralogical variation between 20 measured localities on 5 adjacent magnetites. Only minor amounts of TiO_{2} are subtracted when the minor elements are expelled to give $23.7 \pm 0.35 \%$ ulvospinel. Since the magnetite-ulvospinel contours on the Buddington and Lindsley (1964) diagram are the most steeply incilined they have the greatest influence on the horizontal, temperature axis. At the condition of equilibrium of the magnetite with the ilmenite lamellae a variation of 10% ulvospinel results in a temperature variation of $25^{\circ} \mathrm{C}$, hence the calculated arror of 0.35% ulvospinel gives a temperature error of $\pm 0.88^{\circ} \mathrm{C}$ and a value
of $\pm 1^{\circ} \mathrm{C}$ is adopted here.
The quantity of total fe0 contained in the ilmenite lamellae is 41.19% with an error of $\pm 0.33 \%$ estimated from one standard deviation of the 20 microprobe measurements on ilmenite lamellae within the five adjacent magnetite grains. Only a small proportion of the measured Fe forms the 3.02\% hematite but since a subtraction is involved the whole of the error has been loaded onto the hematite. The less steeply inclined ilmenitehematite lines of the Buddington and Lindsley diagram indicate a greater influence on oxygen fugacity and at the lower temperature equilibration 2% hematite represents a change of about $1 \log \mathrm{fO}_{2}$ in oxygen fugacity. Thus an error of 0.33% hematite represents an error of $0.17 \log \mathrm{fO}_{2}$ oxygen fugacity and a value of ± 0.2 is taken here.

At the condicion of equilibrium of the granular ilmenite the influence of errors in the microprobe results for the granular ilmenite is less, since the lines on the Buddington and Lindsley diagram are spaced more closely and reasoning similar to the above leads to $-11.5 \pm 0.04 \log \mathrm{fO}_{2}$ for the oxygen fugacity measurement. In the determination of the earlier magnetite compasition, errors introduced by other techniques must be considered. The change in cell size of the magnetite with composition is small, so the effect of errors in composition on cell size may be neglected. However the influence of the less precise point courting technique must be considered here. The same five adjacent magnetite grains for which microprobe results were obtained, were covered by point counting on equally spaced linear traverses and 1019 points were counted. The five grains in different orientations show wide variation in the width of the ilmenite lamellae at their intersection with the polished surface. However, since for each grain the relative orientation of the magnetite to the ilmenite is preserved, the measured value of the ratio of area is little affected by changes in orientation. The proportion of ilmenite lamellae determined In this way is $16.1 \pm 2.03 \%$ with the error determined at the 95% confidence limit. This figure is used (Eowles, 1977) to determine that the number of atoms of Fe and Ti within the ilmenite is $(6.12 \pm 0.76) \times 10^{21}$ and $(33.60 \pm 0.84) \times 10^{21}$ within the magnetite. A total of $(39.72 \pm 1.14) \times 10^{21}$ atoms, of which $(5.61 \pm 0.16) \times 10^{21}$ are $T i$, are calculated for the magnetite producing a $\mathrm{Ti} /\left(\mathrm{Ti}+\mathrm{Fe}_{\mathrm{e}}\right)$ ratio of 0.141 ± 0.004 and leading to a molecule containing $42.3 \pm 1.12 \%$ ulvöspinel. At the conditions of equilitration of the granular ilmenite a change of 10% ulvospinel corresponds to a $29^{\circ} \mathrm{C}$ change in temperature and leads to a temperature of $930 \pm 3.2^{\circ} \mathrm{C}$. Because the lines on the Buddington and Lindsley diagram intersect at a low angle, an error on one set of lines influences estimates of error on the other axis

[^0]: 1. Visually estimated line intensitites on the two observed patterns are plotted on the usual scale from $\underset{\mathrm{rwg}}{ }$ (100) to $\mathrm{ww}(10)$, which correlates better with the sauare root rather than the first power of the calculated intenaity. Accordingly for Geller's data we plot values of 0.04 d \times ($\left.I \unrhd F_{\text {obs }}^{2}\right)^{?}$ where g is the reflection multiplicity and d^{\prime} is the interplinar spacing; $d^{?}$ mensures most of the angular variation in the lorentz polarization factor.
