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ABSTRACT. The scale and nature of the exsolution 
textures developed in some titanomagnetites have been 
used to calculate the rate at which the oxides were cooling 
at the time of exsolution. The cooling rates were calcu- 
lated by evaluating a kinetic model, which describes the 
growth of an ulvSspinel-rich lamella in titanomagnetite 
during exsolution. The model was evaluated both by 
numerical techniques and by an approximate analytical 
method. 

The cooling rates during titanomagnetite exsolution 
of the Taberg, Skaergaard and part of the Mt. Yamaska 
intrusions were calculated to be approximately 130, 12 
and 6000 ~ per 1000 years respectively. These values are 
in good agreement with cooling rates calculated from 
heat flow models of the intrusions. 

THE scale of the exsolution textures developed in 
materials has been traditionally used as a qualita- 
tive indicator of the rate at which the materials 
bearing the microstructures cooled. More recently, 
however, efforts have been made to quantify the 
cooling rates which were prevalent during the 
growth of these exsolution microstructures (e.g. 
Goldstein and Short, 1967; McConnell, 1975; Yund 
et al., 1974). In order to achieve this quantification 
a model for microstructural development must be 
established, and data on the parameters controlling 
the formation of the exsolution textures must be 
available. In previous papers (Price, 1980, 1981a, b) 
the mechanisms of formation of the exsolution- 
derived microstructures in titanomagnetites, and 
the pertinent phase and kinetic data, have been 
outlined. In this paper, a mathematical kinetic 
model, intended to describe the growth of the 
titanomagnetite exsolution texture, will be 
advanced. This model will be used to obtain 
quantitative, or at least semi-quantitative, values 
for the cooling rates of several igneous intrusions 
from the scale of the exsolution texture developed 
in their titanomagnetites. 

Perhaps the most important of the recent 
attempts to obtain quantitative cooling rate data 
from mineral microstructures are those of Wood 
(1964), Goldstein and Ogilvie (1965), Goldstein and 
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Short (1967) and later authors (see Moren (1978) 
for a full bibliography), in which the authors have 
used the available diffusion and phase data for the 
Fe-Ni-P  system to obtain cooling rates of iron 
meteorites, by solving an equation describing the 
diffusional development of the kamacite lameUae, 
usually by numerical methods. Recently Miyamoto 
and Takeda (1977) have also modelled the develop- 
ment of exsolution lamellae in some clinopyro- 
xenes, and have obtained cooling rates for several 
stony meteorites. They did not solve their model 
entirely numerically, however, but used various 
approximations to obtain a semi-analytical solu- 
tion to their diffusion-based kinetic model. 

In this present paper, both numerical solutions 
and approximate analytical solutions to the dif- 
fusion equation will be used to evaluate the cooling 
rates of titanomagnetites from the scale of their 
exsolution microstructures. The specific examples 
employed to illustrate the use of titanomagnetite 
exsolution microstructures as indicators of cooling 
rates will be taken from the Skaergaard intrusion 
of E. Greenland, the Mr. Yamaska intrusion of 
Quebec and the Taberg intrusion of S. Sweden. In 
order to ensure that the values of the cooling rates 
calculated for these bodies are physically reason- 
able, the calculated cooling rates will be compared 
with cooling rates calculated by modelling the heat 
flow from the intrusions, as they cooled. Norton 
and Taylor (1979) have carried out detailed heat 
flow (with ground-water convection) studies of the 
Skaergaard intrusion, while the smaller and simpler 
Taberg and Mt. Yamaska intrusions will be 
modelled by the heat flow solutions for simple 
bodies, given by Carslaw and Jaeger (1959) and 
Crank (1956). 

The intrusions studied 

The Taberg intrusion is a body of elliptical 
cross-section (0.9 x 0.6 km), situated to the south 
of Lake Vatten, Sweden, and has been previously 
described by Hjelmquist (1950). The intrusion is 
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FIG. 1. Electron micrographs of exsolution textures developed in some titanomagnetites (scale bar = 200 nm). (a) A 
typical ulv6spinel-rich lamella in titanomagnetites from the Taberg intrusion. Minor lamellae, in the process of 
resorption, subdivide the magnetite-rich regions into blocks. The magnetite-rich regions have developed a characteristic 
mottling, while the ulv6spinel-rich lamellae are free of such contrast. (b) An ulv6spinel-rich lamella developed in a 
titanomagnetite from the Skaergaard intrusion. The lamella shows signs of alteration. (c) Blocks of magnetite are 

separated from each other by lamellae of ulv6spinel in this titanomagnetite from Mt. Yamaska. 

largely composed of a feldspathic magnetite- 
peridotite, which appears to have been intruded 
into the gneissic country rock in a single igneous 
event. A small hornfels contact aurole, of width 
less than 150 m, is exposed around part of the in- 
trusion. The titanomagnetites (no. 54252 in the 
Harker collection) studied were taken from the 
centre of the intrusion and have a composition 
with an ulv6spinel : magnetite ratio of 47 : 53 (Price, 
1980), it being assumed that all other spinel phases 
have been partitioned into the pleonaste lamellae, 
which have also developed in this oxide). The 
oxides show a well-developed exsolution texture 
(fig. la), the detailed nature of which has been 
discussed by Price (1980). 

The titanomagnetites studied from the Skaer- 
gaard intrusion came from an olivine-poor gabbro 
(no. 118792) from the Lower Zone of the intrusion, 
on Kraemer's Island. The titanomagnetite showed 
a relatively coarsely developed cloth-texture, and 
showed slight signs of low temperature titano- 
maghemitization. From an extensive study of the 
specimen, by TEM and optically, the median 
lamellar half-width of the exsolved ulv6spinel-rich 
phase, appeared to be 0.15 #m (fig. lb). The analysis 
of the oxide indicated a bulk Fe2RO4:FeX20 4 
ratio of 42: 58. Since there were no exsolution 
lamellae of pleonaste visible in this specimen this 
ratio was taken as the 'ulv6spinel : magnetite' ratio. 

The microstructure developed in the Skaergaard 
titanomagnetites shows no interaction with the 
grain boundaries, and it is therefore thought to 
have resulted from the coarsening of a spinodal 
texture (Price, 1980). Similarly the microstructure 
(fig. lc) developed in pleonaste-bearing titano- 
magnetites from Mt. Yamaska (no. 92966), is 

thought to have formed by spinodal processes. The 
samples studied came from a yamaskite rock, which 
formed part of a dyke associated with this small, 
complex intrusion in Quebec. The titanomagnetites 
have an ulv6spinel: magnetite ratio of 48 : 52 (Price, 
1980), and a typical ulv6spinel lamellar half-width 
of 0.015/~m. 

The kinetic model 

The development of a coarse microstructure is 
a complex process involving variations in the 
growth rates of particles, as some particles impinge 
on each other and some are resorbed. It is currently 
not possible to outline a detailed kinetic model to 
describe all of these processes in three-dimensional 
microstructures. Graham and Kraft (1966) and 
Lifshitz and Slyozov (1961) have developed models 
to describe the isothermal coarsening of linear, 
eutectic intergrowths and particle arrays. However, 
it is far from clear whether their models can be 
extended to describe the development of three- 
dimensional, interconnecting lamellar microstruc- 
tures, similar to those developed by titanomag- 
netites. In cooling systems, the rate of development 
of microstructures is a complicated function of both 
surface and chemical-free energy changes, but it is 
generally assumed that the chemical-free energy 
changes play the dominant role, except perhaps for 
very slowly cooled systems. This assumption is 
based upon the relative magnitudes of the energies 
involved in chemical and surface energy driven 
processes (e.g. Martin and Doherty, 1976). Follow- 
ing the treatment used by Goldstein and Short 
(1967), therefore, the model used in this paper to 
describe the development of exsolution microstruc- 
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tures in titanomagnetites as a whole will be based 
simply on the growth of ulv6spinel lamellae. This 
model ignores the resorption and surface energy 
effects, and simply describes the diffusion- 
controlled, isobaric growth of a plane fronted 
precipitate, with time-dependent boundary condi- 
tions. In addition it is assumed that: 

(i) the ulvfspinel lamellae grow along a plane 
front (and not by ledge migration). 

(ii) the interface compositions of the ulvrspinel 
and magnetite-rich phase are given by the equili- 
brium phase diagram. 

(iii) the molar volume difference between ulvS- 
spinel and magnetite can be neglected. 

Compared with some of the features of micro- 
structural development indicated above, a model 
of this type is extremely naive. However, such a 
model has been used by Goldstein and Short (1967) 
and others, with some success, in the no less 
complex F e - N i - P  system, and so it is suggested 
that this model should give at least semi- 
quantitative cooling rate data in this present study 
of titanomagnetites microstructures. 

Initially, an ulv6spinel lameUa such as the one 
described above is expected to have a small finite 
width, and to be set within a virtually homogeneous 
matrix. With time, the concentration gradients 
within the lameUa and matrix change as the lamella 
grows. The evolution of the concentration 
gradients is a function of the increasing diffusion 
distance and of the changing equilibrium composi- 
tion of the lamella-matrix interface, as the system 
cools. At low temperatures, the gradients within 
the lamella and the matrix cannot equilibrate, 
because of the slowness of diffusion at these tem- 
peratures, and stranded profiles are retained in 
both phases. The growth of ulvrspinel lamellae can 
be described in terms of composition (C) and 
diffusion coefficient (D), by Fick's second law of 
diffusion: 

- ~\ ~I (~) 

Analytical solutions to Fick's second law are 
available for many sets of boundary conditions. 
However, no analytical solution is available for 
non-isothermal, lamellar growth, which requires a 
moving interface and a diffusion coefficient which 
varies as a function of time (for non-isothermal 
growth, i) is a function of temperature (T), and 
hence time). However, a solution to equation (1) 
with the above boundary conditions may be 
obtained numerically, or, by .making suitable 
approximations, the equation and boundary con- 
ditions can be modified so that an analytical 
solution is possible. Both these techniques will be 
discussed below. 

Numerical solutions. Numerical solutions to the 
diffusion equation describing lamellar growth have 
been obtained by using a computer program kindly 
provided by Professor J. I. Goldstein. The program, 
originally written to model Fe-Ni  interdiffusion 
and the development of Widmanstatten structure 
in meteorites, has been modified in this present 
study to model Fe-Ti  interdiffusion in titano- 
magnetites during the growth of ulv6spinel-rich 
lamellae. The essential nature of the program has 
been described in some detail in Goldstein and 
Short (1967). 

In order to evaluate the program, the following 
input parameters are required: 

(i) the phase relations, in a parameterized form, 
as a function of T and composition. 

(ii) the parameterized form of the diffusion 
coefficient, as a function of T (i.e. D O and AE, the 
pre-exponential factor and the activation energy 
respectively). 

(iii) the bulk composition of the system. 
(iv) the spacing between adjacent ulv6spinel 

lamellae (L). 
(v) the temperature (TN), at which unmixing 

started. 
(vi) the cooling rate, (s), of the system. 

In the study performed by Goldstein and Short 
(1967), neither the initial temperature of exsolution 
(TN), nor the cooling rate (s) of the systems were 
known. Consequently, the values of both of these 
parameters had to be estimated by a series of trial 
and error calculations. This technique, however, 
could not be fully adopted in the calculation of the 
cooling rates of the titanomagnetites from their 
exsolution microstructures, because, although 
composition profiles were available from analytical 
transmission electron microscopy (TEM), the 
phase data are not sufficiently accurate to justify 
a profile-fitting technique, similar to that used by 
Goldstein and Short (1967). Instead, the tempera- 
ture TN was assumed to be the temperature of the 
coherent spinodal for the bulk system, and was 
calculated by the method discussed by Price 
(1981b). From this calculated value of TN and 
known or estimated diffusion and phase relations 
(Price, 1981a, b) a series of calculations were 
performed with varying values of s, the cooling 
rate, until a good agreement between the calculated 
and observed lamellar widths was obtained. 

Analytical solutions. Jost (1952) outlined the 
exact solutions of the diffusion equation for the 
isothermal growth of a lamella into an infinite 
matrix phase so that the lamellar half-width (W), 
after a time t, can be expressed as: 

W = 2/~(bt) ~ (2) 
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where fl is the solution of: 

Cm - -  Co ~�89 fl exp I-fl 2] erfc I t ]  (3) 
C l - -  C m 

where Cm is the composition of the matrix phase 
at the planar interface, C~ is the interfacial composi- 
tion of the lamellar phase, and Co is the bulk 
composition of the oxide. 

For  a non-isothermal system, however, 3 is a 
function of t, and the above solution is no longer 
valid. As pointed out by Miyake and Goldstein 
(1974), Armstrong (1958) has suggested that for 
systems which have C~ and Cm independent of T, 
the lamellar half-width can be expressed as: 

fo W 2 = 4fl 2 3 dt (4) 

The evaluation of the above integral involves yet 
another assumption, however, concerning the 
dependence of T on t during the cooling process. 
For mathematical convenience, Goldstein and 
Short (1967) assumed an exponential cooling rela- 
tionship, T = TNexp{--ct}, over the temperature 
range of interest. Although such a cooling relation- 
ship may not be physically realistic over a large 
temperature range, its use in cooling-rate calcula- 
tions does not introduce significant errors, since 
most (>  809/oo) microstructural growth occurs 
within 50~ of TN, and, over this range, the 
difference between an exponential (or even linear) 
cooling relationship and the probable, natural T-t  
relationship is small. In fact, Elphick (1977, and 
pers. comm.) has shown that it is virtually impos- 
sible to distinguish between microstructures which 
have formed during exponential cooling and those 
which formed during linear cooling. T = TN--st, 
or even when a reciprocal relationship exists be- 
tween T and t, 1/T = I/TN + ct. 

On this basis, therefore, a linear cooling relation- 
ship was adopted in the evaluation (4), since its use 
produces a mathematically tractable integral, while 
the use of the other T-t  relationships produces less 
convenient integrals. It is important to note that, 
since the lamellar half-width in equation (4) is 
dependent upon the integral of the diffusion coeffi- 
cient with respect to time, it is not possible to 
deduce the exact thermal history of materials which 
have undergone a complex T- t  path, and only 
average thermal histories can be obtained for these 
materials. 

By adopting the linear cooling T- t  relationship 
and using the approximations discussed by Arm- 
strong (1958), the lamellar half-width can be con- 
veniently expressed in terms of the cooling rate, s: 

W 2 4fl2RT~D~ exp( -AE/RTN}  (5) 
sAE 

Therefore, from known or measured values of 
t ,  T N, Do, AE, and W, a value of s (in units of ~ 
per sec) can be calculated. 

As pointed out above, this approach is only 
strictly valid if fl is not a function of T. In a system 
with a symmetrical solvus, this condition is only 
true at the centre of the solid solution (i.e. at 
C O = 0.5, where C is expressed in terms of mole 
fractions). However, fl is only a slowly varying 
function of T in the range 0.3 < C < 0.7, and so 
the errors introduced by making the approxima- 
tion that fl is independent of T, are small. 

Results 

Numerical solution. The values of the parameters 
used to calculate the cooling rates of the Taberg 
and Skaergaard intrusions and the yamaskite dyke 
are given in Table I, where cooling rates have been 
calculated for a range of lamellar half-widths. The 
average cooling rates calculated from these para- 
meters correspond to a cooling rate for the Taberg 
intrusion, at 652K, of 120 ~ per 1000 years; to a 
cooling rate for the Skaergaard intrusion, at 
638.5K, of 14 ~ per 1000 years; and to a cooling 
rate for the yamaskite dyke of 6700 ~ per 1000 
years. 

The composition profile measured within an 
ulvSspinel-rich lamella from the Taberg specimen 
is shown in fig. 2. The analyses were made with 
a Philips EM400 electron microscope, with EDAX 
analytical facilities, and the compositions were 
calculated, from the measured X-ray intensities, by 
the usual ratio method (Cliff and Lorimer, 1972). 
The relative positions of the analysed points were 
obtained from the contamination spots which 
developed on the lamella during analysis. The 

�9 indifferent agreement between the calculated and 
measured profiles (fig. 2) is thought to reflect the 
uncertainties in the titanomagnetite phase and 

TABLE I. Values used in the numerical evaluation 
of the diffusion model 

Taberg Skaergaard Yamaskite  

Co, mole fraction ratio, 
U:M 47:53  42:58  48 :52  

T~, initiation temperature 
(K) 652 638 652 

W, half width (cm) 0 .9x  10 - s  1.5 • 10 - s  0.15 x 10 - s  
L, interlamellar spacing 

(cm) 2.5 x 10 ~ 4.5 x 10 s 0.41 x 10 - s  
s, cooling rate (~ per 

1000 y) 140 10 6000 
W, half width (era) 1.0 x 10 s 1 .2 •  0.12 x 10 - s  
L, interlamellar spacing 

(era) 3.0 x 10 -5 3.7 x 10 s 0.30 x 10-s  
s, cooling rate (~ per 

1000 y) 100 17 7500 
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FIG. 2. A plot of the calculated composition profile within 
an ulvrspinel-rich lamella from the Taberg intrusion is 
compared with the compositions measured by analytical 
TEM. The relatively coarse-scale diameter of the electron 
beam used in the analysis means that a definitive compari- 
son between the calculated and measured profiles cannot 
be made. The results are, however, in fair overall agree- 
ment within the lameUar phase, although the agreement 

within the magnetite phase is less good. 

kinetic data used in the calculations. The mismatch 
between the calculated and measured profile within 
the magnetite-rich phase may reflect the effect of 
another ulv6spinel-rich lamella upon the 
magnetite-rich region. 

Analytical evaluation. The rates of cooling of the 
three intrusions were calculated by evaluating s 
from equation (5), using the values of TN, Do and 
AE used in the evaluation of the numerical solution, 
and median values of W, obtained from several 
measurements of electron and optical micrographs. 
Values of fl were obtained from the bulk composi- 
tion of the oxides and the equilibrium composition 
of the coexisting oxides at the temperature of 
unmixing. (Values used in these calculations, and 
their estimated uncertainties, are given in Table II.) 

The cooling rates of the Taberg, Skaergaard and 
yamaskite intrusions were calculated to be 135 ~ 
per 1000 years, 10.7 ~ per 1000 years and 4870 ~ 
per 1000 years respectively. Considering the uncer- 
tainties in the calculations (see below), the agree- 
ment between the results of the approximation and 
numerical techniques is excellent. It is consequently 
suggested that the approximations made in the 
derivation of equation (5) are valid, at least for the 
examples considered here. 

Assessment of errors. The errors associated with 
the calculations outlined above, arise from two 
main sources: 

(i) The magnitude of the errors resulting from 
the uncertainties involved in the measurement of 
the parameters used to calculate the cooling rates 
of the Taberg, Skaergaard and yamaskite intru- 
sions are shown in Table II. Errors in the term fl 

TABLE II. Values of the parameters used to 
calculate s 

Taberg Skaergaard Yamaskite 
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fl 0.35 +-0.03 0.25 +--0.03 0.35 +0.03 
In (f12) --2.10 +--0.17 --2.77 5:0.21 --2.10 +-0.17 
AE(kcalmole - t )  49.8 +-1.5 49.8 -+1.5 49.8 +-1.5 
In (AE) 10.8 -+0.05 10.8 +-0.05 10.8 -+0.05 
In (D) --44.6 / :0.06 - 4 5 . 4  -+0.07 - 4 4 . 6  +-0.06 
In (W 2) - 2 3 . 2  +-0.3 - 2 2 . 2  +-0.3 - 2 6 . 8  -+0.3 
In (s) - 19.3 +-0.58 - 2 1 . 8  +-0,63 - 15.7 -+0.58 

sins (~ per 
1000 y) 75.5 5.72 2700 

SuAx 241.0 20.2 8700 

135.0 10.7 4870 

The units of the parameters quoted in logarithmic form are AE in kcal 
mole - 1, D in cmZs - *, W in em and s in ~ per see.; fl is dimensionless. The 
calculated variation in s is based only on the numerical uncertainties in t ,  
AE, Do and W. The uncertainty in s is probably larger (see text for details). 

arise from the variation in the composition of the 
oxides as measured by the electron microprobe, 
errors in W arise from the range of measured 
lamellar widths, and the error in D O and AE are 
those found from experiment (Price, 1981a). 

These errors propagate through the above calcu- 
lations, so that the estimated errors in the value of 
the logarithm of s (the cooling rate in ~ per sec.), 
calculated from the approximation technique, is 
+0.58, for the Taberg and the yamaskite intru- 
sions, and +0.63 for the Skaergaard intrusion. 
Thus, the expected range in the calculated cooling 
rate for the Taberg intrusion is between 230 and 
80~ per 1000 years; for the yamaskite dyke it is 
between 8700 and 2700 ~ per 1000 years; and for 
the Skaergaard intrusion the expected range is 
between 20.2 and 5.7 ~ per 1000 years. A similar 
range of uncertainty is expected for the cooling 
rates obtained from the numerical evaluation of 
the diffusion model. 

(ii) The second source of error, and doubtless 
the most significant, arises from the possible in- 
applicability of the values of D 0, AE and TN used 
in the calculations. 

The D O and AE values used in the calculations 
were those obtained by Price (1981a) from homo- 
genization experiments performed on naturally 
exsolved titanomagnetites. Although they are the 
only currently available data for Fe-Ti inter- 
diffusion in moderately ulv6spinel-rich titano- 
magnetites (ulv6spinel content > 25 ~), they have 
several shortcomings when applied to exsolution 
modelling in natural titanomagnetites. These 
include the facts that they (i) were performed 
200-300~ above the temperature of exsolution, 
(ii) were unable to take into account the effect of 
Po2 on diffusion rates, and (iii) were unable to take 
into account the role of pressure on diffusion rates. 
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Although none of these factors are expected to 
have a major effect on the results obtained from 
the materials studied above, they must add con- 
siderably to the uncertainties in the results, but to 
an unquantifiable extent. 

As concluded by Price (1981b), the value of the 
consolute temperature of the titanomagnetite 
solvus is less than 455 ~ and, from thermodynamic 
data, may be approximately 440 ~ However, as 
this temperature has not been strictly defined, it 
must also add to the uncertainty in the calculated 
cooling rate values. On this basis, the values of the 
cooling rates calculated above are likely to be 
maximum cooling rates, since if the solvus crest is 
at a temperature lower than 450-440 ~ the calcu- 
lated cooling rates would all be smaller than those 
values quoted above. A lowering of the temperature 
of the solvus crest by 10 ~ produces a decrease in 
the calculated cooling rate of a factor of two. 

Heat flow models 

Norton and Taylor (1979) have studied several 
models of the magma-hydrothermal system of the 
Skaergaard intrusion, and have obtained quantita- 
tive predictions of the variations of temperature 
with time within the intrusion, as well as reproduc- 
ing the likely oxygen isotope variation within the 
intrusion and country rock. They found that for 
their model (S1), the average cooling rate of the 
intrusion, at temperatures of 400 ~ was 2.2 ~ per 
1000 years. However, for a region in the Middle 
Zone of the intrusion, near the margins of the 
intrusion (a similar location to that of the Skaer- 
gaard specimen studied above), they calculated that 
the cooling rate varied from 15 to 3 ~ per 1000 
years, in the temperature range 550 to 375 ~ 
Applying another model ($2) to the system, they 
found that the cooling rates in this region were, 
however, uniformly 2-3 ~ per 1000 years. Con- 
sidering the uncertainties in the microstructurally- 
based kinetic model outlined above, the cooling 
rate of the Skaergaard intrusion calculated from 
the scale of the titanomagnetite microstructure is 
in fair agreement with that calculated by Norton 
and Taylor (1979). 

The thermal history of the Taberg intrusion can 
be modelled (but with less accuracy than that of 
the Skaergaard) by solving the heat-flow equation 
for a cylindrical body. Although the Taberg is not 
perfectly circular in cross-section, the heat-flow 
solution for a cylinder will at least be a reasonable 
approximation to the conductive heat loss of the 
Taberg intrusion as it cooled from magmatic 
temperatures. This model does not take into 
account the loss of heat by hydrothermal convec- 
tion, which may cause a body to cool at a rate 
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which is about twice as fast as it would be if it had 
cooled simply by convective heat loss (Norton and 
Taylor, 1979). 

The solution to the heat flow equation from the 
core of a cylinder, is given by Crank (1956) as: 

T = To(1--exp{--a2/4Kt}) (6) 

where T is the temperature at the centre of the 
cylinder, after time t, T O is the initial temperature 
difference between the cylinder and its surround- 
ings, a is the radius of the cylinder and K is the 
diffusivity, which typically for rock is equal to 0.012 
cm2s- t (Carslaw and Jaeger, 1959). From equation 
(6), the cooling rate of the centre of a cylinder can 
be calculated. 

Assuming that the initial temperature of the 
intrusion was 1100 ~ and that of the country rock 
was 100 ~ then for cylindrical intrusions of radii 
0.3 and 0.45 km (the limiting radii of the Taberg 
intrusion), the cooling rates at 380~ (TN for 
exsolution) are 233 and 104~ per 1000 years 
respectively. 

Similar calculations to those above can be made 
to estimate the expected cooling rate of the 
yamaskite dyke from Mt. Yamaska. Unfortunately, 
the exact size of the dyke from which the specimen 
was taken is unknown. However, dykes in this area 
are generally less than 50 m wide. Jaeger (1959) 
has calculated the likely cooling curves for dykes 
of various thicknesses and, from his graphs, it is 
expected that the cooling rate of a dyke, at about 
500-300 ~ is given by: 

dT/dt = -- 8.3 x 106/d 2 (7) 

where d is the dyke thickness, in metres. For  a 
dyke of 50 m width, the cooling rate, at ~ 400 ~ 
is likely to be approximately 3300~ per 1000 
years; again a result in good agreement with the 
cooling rates calculated from the titanomagnetite 
microstructures. 

Although the above cooling calculations, involv- 
ing heat flow modelling, are of varying sophistica- 
tion, it appears that they are in broad agreement 
with the cooling rates calculated from the scale of 
titanomagnetite microstructures. This agreement 
may be to some extent fortuitous, considering the 
approximations made in both types of calculations. 
Nevertheless, it has been shown that the cooling 
rates calculated from titanomagnetite rnicrostruc- 
tures are at least semiquantitative. Perhaps further 
progress could be made in the field of modelling 
microstructural development if a detailed syste- 
matic study of the titanomagnetite microstructures 
developed in oxides "from a specific, well- 
characterized intrusion (e.g. the Skaergaard) was 
performed, and the variation of the microstructures 
observed correlated with the expected variations 
in the cooling rates within the intrusion. 
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Assessment o f  the kinetic model and its solutions 

As suggested above, the model proposed, namely 
that the evolution of a complex three-dimensional 
microstructure can be described by the growth of 
a simple lamella into a matrix phase, is highly 
approximate. However, it is currently not obvious 
how a more sophisticated model could be 
developed. The major problems in developing a 
more accurate model lie in (i) modelling three- 
dimensional diffusion fields and (ii) determining the 
relative importance of chemical and surface-energy 
driving forces in cooling systems. As discussed 
above, it would seem reasonable that the chemical 
free energy would serve as the major driving force 
for microstructural change, when cooling rates 
were relatively rapid and overall chemical equili- 
brium was never approached. Surface energy, 
however, would be expected to be more important 
in the later stages of growth, in more slowly cooled 
systems. It is not currently possible to quantify the 
relative importance of these effects. However, their 
role should always be borne in mind when the 
kinetic model is applied to oxides from more slowly 
cooled systems. 

In addition to the shortcoming of ignoring 
surface energy effects, a major assumption, made 
in this model, is that one-dimensional lameUar 
growth proceeds at similar rates to that of three- 
dimensional microstructural development. In 
theory, the growth of three, mutually orthogonal 
planar lameUa should be modelled, in order to 
reproduce more accurately the development of the 
titanomagnetite microstructures (this would still 
ignore the effect of lamellar resorption during 
coarsening). A calculation of this sort would, 
however, be mathematically very complex. Thus, 
it is concluded that the model adopted in this study 
is not entirely satisfactory, yet from the results of 
previous studies and from the findings of this study, 
it appears that this simple model can produce 
reasonably accurate results. 
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