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ABSTRACT. Measurements of fine-grained dolerites by 
optical automatic image analysis are used to illustrate the 
effects of magnification and resolution on the values 
obtained for grain 'size', grain boundary length, surface 
area per unit volume, and other parameters. Within the 
measured range of optical magnifications ( x 26 to x 3571) 
and resolutions (1.20 x 10 -3 cm to 8.50 • 10 -~ can), it is 
found that the values of all grain parameters estimated by 
chord size analysis vary with magnification. These results 
are interpreted in terms of the concepts of 'fractal 
dimensions' introduced by Mandelbrot (1967, 1977). For 
some comparative purposes the fractal relationships may 
be of little significance as relative changes of size, surface 
area, and other parameters can be expressed adequately at 
given magnification(s). But for many studies, for instance 
in kinetics of grain growth, the actual diameter or surface 
area per unit volume is an important dimension. The 
consequences are disconcerting and suggest that it may be 
difficult in some instances to specify the 'true' 
measurements of various characteristics of fine-grained 
aggregates. 
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T H E values obtained from automatic image analysis 
measurements, such as grain boundary  length and 
mean chord length, depend upon the magnifica- 
tions employed and therefore also upon the resolu- 
tion of the image. As magnification increases, grains 
of progressively smaller size with finer boundary  
details can be resolved and measurements of grain 
boundary  length per unit  area increase correspond- 
ingly. True length (of perimeter or chords) appears 
indeterminate since it depends upon the linear 
picture element (pixel) scale unit  used. As the pixel 
size decreases the boundary  length tends towards 
infmity. 

Although these features are familiar in the 
measurements of biological images (Paumgartner 
e t  al. ,  1981; Rigaut, 1983) there is little appreciation 
or discussion of them as they apply to the measure- 
ment of grain 'size' in petrology. The aim here 
is to outline the concept of 'fractar dimensions 
(Mandelbrot,  1967, 1977) and to illustrate its 
application to the measurement of grain 'size' 
and grain size distributions by automatic image 
analysis. 

Copyright  the Mineralooical  Society  

F r a c t a l  d i m e n s i o n s .  The length of a curve or 
irregular grain perimeter (P) may be measured in 
terms of a number  of steps (n) of length (x), where 

P = nx .  (1) 

As the step size x decreases, the apparent length 
of the perimeter increases. Mandelbrot  (1967, 1977) 
has shown that n is not  necessarily a linear function 
of x and that a general expression relating these 
quantities is given by 

n = 2x -~  (2) 

Where D is interpreted as a dimension (1, 2, or 3) 
and 2 is a constant  representing the measure of the 
curve in dimension D. 

F rom (2) it is seen that 2 represents the length of 
curve ifD = 1, area ifD = 2 or volume ifD = 3, i.e. 

= n x  n. (3) 

Combining (1) and (2) yields 

p = 2 x - O x  = 2 x  1 - 0  

or log P = (1 - O) log x + log 2. (4) 

Thus, a plot of log P against log x gives a linear 
trend with a slope (1--D). 

The relationship between pixel size (x) and 
magnification (M) is given by 

x = a M -  ~ (5) 

where a is the pixel size at a magnification o fM  = 1, 
representing the actual pixel size on the monitor  
screen. 

From (4) and (5) 

p = 2~ t -  D.MD- 1 

or l ogP  = log(2~t l -~  1) logM (6) 

which is analogous to (4). Comparing (4) and (6) we 
see that 

Pt M1 D- x x_~x 1 - o  

- M2 = 1x21 . (7) 

This result is the desired expression which 
enables the perimeter value (P0 determined at a 
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given resolution (xl) or magnification (Ma) to be 
transformed to the appropriate perimeter length 
(/'2) which would be obtained at a different resolu- 
tion (x2) or magnification (M2). 

Mandelbrot (1967, 1977) showed that there are 
lengths of sinuous curves for which (1 ~< D < 2) and 
areas where (2 ~< D < 3). These (non-integer) values 
of D are termed 'fractals'. 

Measurements. To illustrate the relevance of the 
fractal concept to the relationships of measured 
grain parameters and the magnifications at which 
the measurements are made, a series of chord size 
distributions have been determined on plagioclase 
feldspars from three texturally homogeneous fine- 
grained dolerite specimens from near the margins 
of large sills: 

(1) E 59344; 2 cm from the lower contact of an 
irregular sill about 80 m in thickness at Tal-y-Fan, 
near Conway, Gwynedd (NGR SH 7295 7270), 
North Wales. 

(2) E 40452; 2 cm from the upper contact of the 
Whin Sill (67.3 m in thickness) in the Ettersgill 
(ET-16) borehole (NGR NY 8927 2907), Durham. 

(3) E 40382; 61 cm from the lower contact of the 
Whin Sill (71.0 m in thickness) in the Allanhead no. 
1 borehole (NGR NY 8604 4539), Durham. 

These speciments have been chosen to represent 
both similar grain sizes from different intrusions (1 
and 2 above) and also different grain sizes from the 
same intrusion (2 and 3 above); the measurements 
will be referred to as data sets 1, 2, and 3. 

Three main methods have been proposed for the 
determination of fractal dimensions. (1) A divider 
stepping method was the first to be used to measure 
around the length of an outline, either physically 
(Mandelbrot, 1967, 1977) or by means of a suitable 
image analysis computer algorithm (Schwartz and 
Exner, 1980). Alternatively (2) boundary measure- 
ments may be made by image analysis using a sized 
octagonal element to dilate the boundary by 
known amounts which correspond to different step 
lengths (Flook, 1978). A different approach (3) is a 
chord size distribution method using an image 
analysing computer at various magnifications. 

The latter method is employed in the present 
study, since this allows rapid acquisition of a large 
number of chord intercepts using a simple sizing 
algorithm. It is an indirect method since grain 
perimeter lengths and other parameters are not 
measured directly by stepping along the features, 
but are derived from moments of the chord size 
distribution (see Table I). 

Two-dimensional chord size distributions were 
measured on thin sections of each specimen using a 
Quantimet 800 Image Analysis System (Cambridge 
Instruments Ltd.). 

Measurements are made in terms of picture 
elements (pixels) and, as magnification increases, 
the ratio of the pixel size to grain size decreases. 
This results in a smaller effective measuring unit 
for the delineation of grain boundary length or 
chord length. 

Resolution of the image is limited by the finite 

Table ] .  Parameters derived from c h o r d  s i z e  distribution measurements. 

Parameter Symbol and U n i t s  D e r i v a t i o n  * 

Number o f  g r a i n s  per u n l t  
vo lume  of  phase N v e ra - '  3 ~ ( s ~ )  - I  

Number o f  g r a i n s  p e r  u n i t  
a r e a  o f  phase g A cm - z  3~(wc'~) - I  

S u r f a c e  a r e a  per  un~.t 
volume o~ phase S v cmZlcm * 4 ( ~ )  - I  

P e r i m e t e r  per  u n l t  a r e a  
o f  phase  PA cm/cm* w(~)  - I  

Area f r a c t i o n  fA s 

Mean c h o r d  ~ cm 

Standard  d e v i a t i o n  o f  
mean chord o~. cm ( c-"i-(~) 2 ) �89 

Diameter  o f  e q u i v a l e n t  
s u r f a c e  a r e a  sphere  D s em 2[c -~ ( ] (E)z ) - l )  �89 

Diameter  o f  e q u i v a l e n t  
volume sphere  D v cm 2{c-;(4( ~-))-1 ] | 

Mean P e r i m e t e r  per g r a i n  P cm w ' c - ~ ( 3 ( ~ ) : )  - I  

Mean a r e a  per  g r a i n  ~ ~ *  fc--J(3~)-I 

Mean volume per g r a i n  V cm: "a~'(3~) -1 

* c TM = ( ~ c m ) I N , w h e r e  N i s  t h e  number  o f  chords  measured and m - 1 , 2 , 3 , A .  
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Flo. 1. Plane polarized light photomicrographs of dolerite 61 cm from the lower contact of the Whin Sill (data set 2, 
see text). The resolutions of these photographs are shown on fig. 4. Magnifications are: 1, x 12; 2, x 30; 3, x 68; 

4, x 118. 

FIG. 2. Plane polarized light photomicrographs of dolerite 61 cm from the lower contact of the Whin Sill (data set 2, see 
text). The resolution of these photographs are shown on fig. 4. Magnifications are: 1, x 220; 2, x 471; 3, x 706; 4, x 1067. 
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pixel size on the monitor screen image and by 
the microscope optics; usually the area of field 
measured at high magnification is only a sub-area 
of that for low magnification. 

Final magnifications at the monitor screen range 
from x 26 to • 3571 and as magnification increases 
the area of thin section covered by a single field of 
view decreases from 7 • 10- a cm z to 3.6 • 10-5 
cm 2. Some examples of the variation of magnifica- 
tion and resolution are shown in figs. 1 and 2. 

The detection of any phase, in this instance 
feldspar, by automatic image analysis is based on a 
grey-level scale of optical brightness. An automatic 
setting is used to define the half-contrast grey-level 
between feldspar and other darker phases, includ- 
ing pyroxenes and opaque oxides. Chord sizing 
is based upon the measurement of the lengths of 
horizontal scanning lines (with spacing equal to the 
resolutions listed in Tables II and III) which 
intersect the detected areas of feldspar, see fig. 3. A 
geometric progression of cell sizes for accumulating 
the chord frequencies between preset (pixel unit) 
length limits is based on a factor of (10) ~ and this 
normally results in about 20 or more intervals. All 
measurements and data collection are under soft- 
ware control. 

The first four moments of chord lengths in the 
two-dimensional image are derived from 

c m = X ( c m ) / N .  

Where m is equal to 1,2,3,4; X(c")= c ] ' + ~ +  
c~'... + c~ and N is the number of chords measured. 
Tables II and III list these values for the three data 
sets, each of which consists of measurements taken 
at a series of different magnifications. A number of 
different objectives were used (x  1, x 2.5, x 5, 
x 10, x20, x40, x63, x 100)together with a 
projector lens assembly which introduced a further 
magnification factor ( x 1.000, x 1.195, x 1.532) to 
the final monitor screen image; each combination 
results in a different scanner resolution in cm per 
pixel (Table II). At all magnifications the optical 
resolution is superior to that of the scanner and the 

FIG. 3. Chord sizing, showing the effect of measuring 
all chords >/~ pixels across a grain. I = measured 
intercept, A = measured area. Total length of all 

chords/> ~ = A + I~. 

T a b l e  I I ,  8 a s n i f i c a t i o n  ~ r e s o l u t i o n  and  mean c h o r d  m e a s u r e m e n t s ,  
d a t a  set  1 

H a g n i f i c a t i a n  8 e e o l u t i o n  Mean C h o r d s  ( p i x e l  u n i t s )  
e m e / p i x e t  

x26 1.20x10 - t  9 . 3  106 1705 42510 
x31 1 .00xl0  - I  10.3 127 2112 50954 
x38 8 . 0 0 x 1 0 - '  8 . 7  89 1223 24368 
x67 4,55x10 -~  10.2 124 2071 51075 
x70 4 .35x10  -~ 10.6 135 2340 62043 
xSl  3.79x10 TM 10.5 134 2389 63270 
x84 3.66x10 TM 11.1 148 2735 35452 

x104 2.94x30 -~ 11.9 177 3875 135123 
x l lO  2 .78x10-*  11.2 150 2631 65846 
x135 2.27x10 -~ 11.0 141 2419 61173 
x208 1.47x10 -~ 10.3 126 2071 49959 
x253 1.21x10 -~ 10.8 138 2328 56050 
x306 l .O0xlO -~ 10.7 136 2301 53864 
x392 7.8Ox10 - s  11.5 163 3158 86853 
x478 6 .39x10-*  13.3 220 5207 194647 
x537 5.70x10 - s  13.4 219 4346 121489 
x680 4 .49x10  - I  13.7 223 4721 137018 
x927 3.29x10 - t  13.8 244 6660 298883 

x1133 2.70x10 - s  14.6 270 7530 354970 
x1165 1.96x10 -$ 14.5 257 6191 217799 
x1392 1 .60x l0  - j  13.6 220 4725 145569 
x1457 2.10x10 - s  16.1 328 9499 410033 
x1785 1.25x10 - I  14.8 262 6231 215827 
x2318 1.31x18 - s  14,5 253 5858 L97966 
x2807 1.08x10 - J  16.8 361 11341 589666 
x3571 8 .50x10-*  18.7 437 14400 697145 

T a b l e  I I I .  M a d n i f i c a t i o n  F reso lu t ion  and mean c h o r d  m e a s u r e m e n t s  e 
d a t a  s e t s  2 and  3. 

H a g n i s  R e s o l u t i o n  Mean C h o r d s  ( p i x e l  u n i t s )  
c a s / p i x e l  

E~0452 Data set  2 

x26 1.20xlO - j  11.4 148 2383 31382 
x70 4 .35x10 - '  12.0 184 4081 134399 

x135 2 .27x10 - "  11.5 157 2820 71903 
x253 1 .21x lO -~ 9 .7  110 1597 32141 
x478 6 .39x10 - s  13.7 233 5568 192383 
x927 3.29x10 - s  12.1 173 3303 90866 

x1165 1.96xlO - I  10.3 121 1765 35524 

E40382 Data  s e t  3 

x26 1 . 2 0 x l O - '  20 .6  466 12310 40126 
x70 4 . 3 5 x 1 0 - '  18.5 418 12855 57213 

x133 2 . 2 7 x 1 0 - "  20.4 550 23201 1621660 
x253 1.21x10 -~ 18.5 462 17906 1085519 
x478 6 .39x10 - s  19.1 494 20359 1329686 
~ 2 7  3.29x10 - s  19.0 478 18229 1083432 

x1165 1 .9bx l0  - s  21 .3  651 34516 3107631 

latter therefore controls the final pixel resolution 
for the measurements on the monitor screen. 

Since the chord size distribution is based on a 
two-dimensional scan the logarithmic-cumulative 
probability plots of the results normally form 
smooth curves, rather than the straight lines 
which would be characteristic of a lognormal 
three-dimensional distribution. Using the method 
of Cahn and Fullman (1956) the smoothed, two- 
dimensional frequency distribution may be 
transformed to the corresponding one in three 
dimensions; the latter produces a linear trend on a 
logarithmic cumulative probablity plot indicating 
the lognormal nature of this chord size distribution. 

It becomes increasingly impractical to measure 
the same area of specimen as magnification in- 
creases, but approximately the same number of 
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chords (about 1.5 x 10 6) have been measured at 
each, corresponding to grain boundary  lengths per 

Heasured 
square centimetre ranging from about  2.3 to almost p . . . .  t e r  

200 m. 
At each magnification the chord length frequency D ...... i 

distribution is measured, from which all the other ,, 0.0034 
parameters are obtained by the following relation- s  ̂ 0.0320 

Sv 0.9307 
ships (Crofton, 1869; Davies, 1962) P, o.7511 

"P 22.93 

e = ~ A / P  (8) ~ 4.301 
- -  ~[ 31, II 

c 3 = 3(3)2/P (9) v ~6.3 

where ~ is the mean chord and c 3 = C~,c3)/n, in . . . . . . .  2 
which n is the number  of chords and .4 and /~ "v o.oool D A 0.0032 

are the mean area and perimeter per grain, s, 0.0121 
FA 0. 2664 

expressed as �9 82.5, 
- -  ~ 11.79 

,~ = ~C3(36) - 1 (10) X 3o9.9 

V 8410 
15 = 7~2C3(3(()2 ) -  1. (1 1) 

Data =et  3 

An important  additional relationship (Hostin- ", 0.0003 
sky, 1925) allows the ratio of mean particle volume D̂  o oo54 

8 v 0.2090 

(V) to surface a r e a  (SA) to be obtained p~ OLU,2 
"l~ 30.12 

= ~ 19 �9 16 C 4 12 ~'2(7CSA)- 1. (12) x 183.7 

Using this result and that of Cauchy (1850) v l ss l  

6 = 4 V S j  1 (13) 

yields F = =c4(3c)- 1 (14) Table ,,. 

and SA = 4nC4(3(6)2) - 1. (15) , . . . . . . . .  

A summary of the derived parameters obtainable 
from moments  of the two-dimensional chord size "v -2.76 
frequency distribution is given in Table I; although ,, -1.86 
the measured chords are two dimensional (thin s~ -0.97 

PA -0.96 

section) values the derived estimates of V, N~, and S~ ~ 0.90 
are three-dimensional. ~ 0.96 

Effects  o f  resolution on grain parameter measure- x 1.86 
ments. Previous studies have concentrated mainly ~ 2.76 
on the effects of resolution on measurements of 
Pa, So, and P although it is clear that all 
other grain parameters must also be affected in a 
corresponding manner.  

The principle differences between this study on 
detected areas of a mineral phase in thin section and 
others, for instance on biological images, are (i) the 
extension of the fractal dimensions to other para- 
meters, and (ii) the methods of measurement. 

However, if the fractal concept is applied, as 
outlined above, then values of D may be assigned to 
the slopes of the log-log plots of various parameters 
against resolution. On this basis systematic rela- 
tions between resolution and measurements of 
various parameters are evident. 

Tables II and III  list the magnifications and the 
corresponding resolutions a n d  chord measure- 
ments for the three data sets. Least squares regres- 
sion coefficients (a and b) are given in Table IV for 
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T a b l e  IV, Leas t  s q u a r e s  r e ~ r e s s i o n  c o e f f i c i e n t s  and f r a e t a l  v a l u e s  
f o r  d a t a  s e t s  1-3 

Least  S q u a r e s  C o r r e l a t i o n  P r a c t a l  
C o e f f i c i e n t s  C o e f f i c i e n t  V a l u e  

a b r O~ 

-2 .6229 -0 .9957  2.87 

-1 .7490  -0 .9969  2.87 

-0 .8875  -0 .9983  2.89 

-0.8840 -0 .9985  2.08 

0.8628 0.9942 2.86 

0 .8875 0.9983 2.89 

1.7490 0.9969 2.87 

2.6229 0.9957 2.87 

-3 .0275  -0 .9920  3.01 

-2 .0206  -0 .9935  3.01 

-1 .0173  -0 .9877  3.02 
- 1 . 0032  -0 .9971  3 .00  

1.0173 0.9877 3.01 

1.0032 0.9971 3.00 

2.0206 0 .9935 3.01 

3.0275 0.9920 3.01 

-2 .6160  - 0 . 9960  2,87 
-1 .8100  -0 .9979  2.91 

-0 .9974  -0 .9993  9.00 

-0 .9974  -0 .9993  3.00 

0.8125 0.9922 2.81 

0 .9975 0 .9993 3.00 

1.8100 0.9979 2.91 

2.6160 0.9960 2.87 

Mean s l o p e s  and f r a c t a l  v a l o e $  f o r  d a t a  s e t s  1-3 

Mean S l o p e  F e a c t a l  V a l u e s  

(b)  ( l •  = D, D, = D, +I 

l - b / 3  1.92 2 .92  
l - b / 2  1.93 2.93 

l - b  1 .97 2 .97  
l - b  1.96 2.96 

l+b 1.90 2.90 
l+b 1.96 2 .96  

l+b/2  i .93 2 .93  
l+b/3  1.92 2 .92  

the general form of the relationship y = ar b where y 
is the parameter, r is the resolution of the measure- 
ment, and b is the slope. Also listed are the values of 
D derived from D = (1 + b/g) as shown in Table V, 
where 6 is the appropriate dimension. Log-log 
plots of the various parameters against resolution 
for the three data sets are shown in figs. 4-6, and 
photomicrographs at different resolutions in figs. 1 
and 2. 

Notable features of these plots are the systematic 
differences in slope and the close approach to 
linearity, as shown by the correlation coefficients 
listed in Table IV, although the principal and 
perhaps most surprising feature is the large range 
of values for each parameter, depending on the 
magnifications used in the measurements. 
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Slopes vary from about 1 for mean grain peri- 
meter (/5) and mean chord (c-) to about 2 for mean 
grain area (.~) and about 3 for mean grain volume 
(~ .  Corresponding negative slopes occur of about 
- 1  for surface area per unit volume (So) and for 
perimeter per unit area (PA)~ about - 2  for number 
of grains per unit area, (Na), about - 3 for number 
of grains per unit volume (N~). Area fraction has a 
zero slope and is the only constant measurement 
with change of resolution. 
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FIG. 4. Variation of surface area per unit volume (Sv) with 
resolution (x)for data set 1. The fractal value D2 is equal to 
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FIG. 5. Mean number of grains/cm 3 (N~), mean number of 
grains/cm 2 (Na), mean surface area per unit volume 
cmZ/cm 3 (So), and mean perimeter per unit area cm/cm 2 

(Pa) plotted against the resolution of measurements. 

As magnification increases from about x 20 to 
about x 2000, the apparent mean grain volume ~" 
and also No vary by around six orders of magnitude. 
,4 and NA by about three orders of magnitude and 
S~, Pa,/5, and ( by about two orders of magnitude. 
These extremely large rates of variation with 
change of magnification are not apparent in 
reported determinations of grain parameters, since 
normally only a single magnification is used for the 
measurements. 

The fractal values derived from the relationships 
given in Table V are listed in Table IV for the three 
data sets. Fractal dimension obtained from planar 
measurements (D2) may be transformed to that 
(/)3) representing three dimensions by D 2 + 1 = D 3 
(Paumgartner et  al., 1981). On this basis the mean 
surface area per unit volume (S~) value of D 3 (Table 
V) becomes 2.97. The variation in values for D3 is 
well illustrated by data from Paumgartner et  al. 
(1981) ranging from 2.09, 2.54, 2.72 to the higher 

values of Table IV of 2.86 to 3.02 (mean 2.97); also 
by the numerous D 3 values (1.95 to 2.97) listed by 
Avnir et al. (1983). 

The results outlined here, as illustrated by the 
three data sets, are all interrelated by means of the 
fractal dimension values (Table V) and any para- 
meter (7) may be transformed from one magnifica- 
tion or resolution to another by means of the 
relationship 

7__1 = M 1 - b =  xlb.  (16) 

7 2  M2 X 2  

A number of papers refer to ffactal dimensions of 
shapes and surfaces (see Lovejoy, 1982; Avnir et  al., 
1983) in terms of surface area against diameter or 
area against perimeter, rather than as relationships 
of various parameters (Table I) against resolution 
of the measurements. This study is necessarily 
confined to the latter presentation, since the 
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against resolution of measurements. 

measurements are made of chord lengths and all the 
other parameters are derived from these; hence 
plotting S A against D or P against A will yield 
integer fractals. 

The sionificanee o f  f raetal  relationships. Dis- 
crepancies in Sv and Pa measurements at different 
magnifications have been noted in various carto- 
graphical, biological, and metallurgical systems by 
Underwood (1961), Richardson (1961), Keller et al. 
(1976), Weibel (1979), Olah (1980), and Paumgart- 
net et al. (1981). Weibel (1979) referred to such 
disturbing findings, commenting that this resolu- 
tion effect is probably a widespread general 
phenomenon and that a choice of appropriate 
resolution was clearly an important consideration 
in practical stereology. 

In some, 'non-ideally fractal', systems (Rigaut, 
1983) the log-log relationship of equations (4) 
and (6) is not followed exactly and at higher mag- 
nifications the boundary length asymptotically 
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approaches a maximum value. Increase in length 
with increasing magnification then ceases to be 
regular and 'self-similar' and a critical magnifica- 
tion or resolution may be found at which the total 
complexity of the system is resolved. 

Grain parameters recorded here for the three 
dolerites do not show any departure from a regular 
(log-log) fractal relationship up to the maximum 
magnification which can be achieved optically. 
Theoretically, as magnification increases, the 
parameters Nv, Na, Sv, and PA increase and P, 6, and 
~" decrease without limit. 

This paradoxical situation raises a number of 
problems since, although measurements taken at 
one magnification can be transformed to those 
obtainable at another by equation (16), the 'true' 
dimensions of the structure (to which all measure- 
ments should be standardized) remain elusive. 

For  some comparative purposes the fractal rela- 
tionships may be of little significance as relative 
changes of size, surface area, and other parameters 
can be expressed adequately at given magnifica- 
tion(s). But for many studies, for instance in grain 
growth kinetics, the actual mean grain diameter 
or surface area per unit volume is an important 
dimension in terms of growth and diffusion, since 
surface free energy and chemical potential gradient 
are directly related to mean grain curvature and to 
surface area per unit volume. 

Low D3 values (e.2.0) represent relative surface 
smoothness and high values approaching 3.0 
indicate extreme irregularity. The fractal dimension 
thus becomes a powerful quantitative description 
of surfaces and also of surface layers, which may 
vary from a two-dimensional film to an almost 
three-dimensional bulk as the substrate changes 
from a near-planar surface to an irregular sponge- 
like structure in which the adsorbate molecules can 
penetrate into the solid. These effects are important 
in surface reactivity and have important applica- 
tions in surface chemistry (Pfeifer and Avnir, 1983; 
Avnir et al., 1983, 1984). In a study of fractal 
surfaces at the molecular level Avnir et al. (1984) 
have collected many examples of high surface area 
fractal dimensions (2.70-2.97) from a wide range of 
materials, amongst which are igneous, granitic, and 
dolomitic rocks. 

Application of these concepts to grain growth 
and to mineral reactions in petrology may yield 
new and sometimes surprising results as has occur- 
red in other well-established areas of science 
(Jakeman, 1984). The significance of fractal dimen- 
sions is central to the appreciation of all dynamic 
surface processes dependent on surface irregularities 
or defects and, as Avnir et al. (1984) have pointed 
out, it is difficult to conceive of any of these 
processes that are not so dependent. 
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In a given situation, the thermal history of a rock 
may result in the attainment of temperatures at 
which ionic mobility is significant. A reduction of 
surface area is produced by grain growth, in 
response to the requirements of minimizing surface 
energy, in an approach towards equilibrium. In 
diffusion controlled solid state annealing the mean 
grain diameter during or after growth (G) is related 
to the initial diameter (Go) by the expression 

G i /n -  G~/" = kt (17) 

where t is time and n is an exponent which may be 
related to growth mechanisms (Beck, 1948). The 
temperature dependent growth rate k follows an 
Arrhenius behaviour 

k = k0 exp ( -  Q/R T) (18) 

where Q is the activation energy for growth, T is 
temperature, and k o is the pre-exponential factor. 

In some examples of grain growth the values 
of n, k, ko, Q, and T may be derived from the 
field relationships of grain size to distance (either 
external or internal) from an igneous contact. The 
kinetics of grain growth (i) during cooling and 
annealing growth after crystallization, or (ii) during 
contact metamorphism, or (iii) during a later phase 
of regrowth metamorphism may be modelled in 
this way. 

The mean grain diameters used in such relation- 
ships (or equivalent sphere diameters, see Table I) 
determine the estimates of growth rates, activation 
energy, and temperature under which the reactions 
occurred. Since the estimated mean grain diameter 
is dependent upon the magnification and resolution 
at which measurements are made it is clearly 
important that the most appropriate or 'relevant' 
value should be used (Weibel, 1979). 

Conclusions. In an ideally fractal relationship the 
answer to 'what is the appropriate value'?, can only 
be given in terms of the system under consideration. 
For instance, at one extreme, the mean size of 
phenocrysts can be adequately defined by including 
only those larger than a certain size relative to the 
groundmass; at the other extreme an intrinsic limit 
to the values of the various parameters is set by the 
molecular lattice dimensions of the mineral phase 
(Avnir et al., 1983) at around 10 - s  cm. 

In many instances it does not seem possible to 
discern a finite limit to the measurements of So, PA, 
and other parameters at which the structure is 
completely resolved and it becomes necessary to 
define a working limit which is appropriate and 
relevant to the problem in hand. In the study of 
grain growth reactions the next larger significant 
scale interval to that of the molecular lattice 
dimension, relevant to the mechanisms of growth, 

is given by the mean width of the effective grain 
boundary regions. Studies of grain boundary width 
in a variety of materials (see Brady, 1983; Joesten, 
1983) yield a range of determined and calculated 
values, from about 6 x 10- 7 cm to about 2 x 10- 5 
cm, the average of which lies at about 3 x 10 -6 cm; 
for comparison, the highest resolution of the image 
analysis system (see Table II) is 8.5 x 10-6 cm. 

It would seem appropriate to use a resolution 
near to these values for kinetic studies of the type 
outlined above, although at present, for ideally 
fractal relationships, there seems to be no totally 
satisfactory solution to this perplexing situation. 
The purpose of this paper is solely to outline the 
problem and its implications as it applies to 
granulometric measurements in petrology. 
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