SHORT COMMUNICATIONS

MINERALOGICAL MAGAZINE, JUNE 1986, VOL. 50, PP. 323-5

Copper-tin sulphides in the system Cu-Sn-S

It is well known that copper and tin form complex sulphides. In two preliminary studies, Moh (1960, 1963) identified four phases in the system Cu-Sn-S. Both Cu_2SnS_3 and $Cu_2Sn_2S_5$ are on the join Cu_2S-SnS_2 . Cu_2SnS_3 is characterized by a tetragonal-cubic transition at 780 °C, whereas $Cu_2Sn_2S_5$ exhibits an extensive range of solid solution between Cu₂SnS₃ and SnS₂. The other two phases, Cu₅SnS₄ and Cu₅SnS₆, are stable below 600 °C. Subsequent studies suggested that $Cu_2Sn_2S_5$ and Cu_5SnS_4 be discarded (Wang, 1974), and seven new copper-tin sulphides were proposed: $Cu_2Sn_3S_7$ (Wang, 1974; Sobott and Teh, 1977), Cu₄SnS₄ (Wang, 1974; Jaulmes et al., 1977), Cu_{9.67} Sn_{2.33}S₁₃ (Wang, 1976), Cu₅Sn₂S₇, Cu₇Sn₃S₁₀ (Wang, 1977), Cu₄SnS₆ (Wang, 1981) and Cu₃SnS₄ (Moh, 1982). This study examines their relations in the system Cu-Sn-S.

Experimental procedure. Experiments were performed by means of the conventional evacuated glass capsule technique using elements of 99.99% purity as specified by suppliers' analyses. Heat treatment was conducted in muffle furnaces controlled to ± 3 °C. Quenched products were examined by X-ray powder diffraction, reflected light microscopy, and electron microprobe analysis. Cell dimensions ± 0.005 Å were computed by using a least-squares refinement program.

Results and discussion. Phase relations in the system Cu-Sn-S were studied in the temperature range between 400 and 650 °C. Five copper-tin sulphides are stable in the system, Cu₂Sn₃S₇, Cu₂Sn₃, Cu₄Sn₅, Cu₅Sn₂S₇, and Cu₁₀Sn₂S₁₃. The latter is structurally an equivalent to Cu_{9.67} Sn_{2.33}S₁₃, but with a slightly different composition. X-ray powder diffraction data of Cu₂Sn₃S₇, Cu₂Sn₃, Cu₄Sn₅, and Cu₁₀Sn₂S₁₃ are listed in Table I.

Phase relations in a 500 °C isothermal section are illustrated in fig. 1. Metallic liquid develops only in the Sn-rich portion of the system, and is isolated from sulphide assemblages, except SnS, by the join SnS-Cu₃Sn. In the S-rich portion, sulphur in the form of liquid exists in equilibrium with sulphides.

Cu₂Sn₃S₇ is monoclinic with cell dimensions of a = 12.68, b = 7.351, c = 12.76 Å, and $\beta = 109.60^{\circ}$. The X-ray powder diffraction pattern is very similar to that of rhodostannite, as Wang (1974) pointed

out, except for several weak reflection lines. Electron probe analysis give a formula $Cu_{2.1}Sn_{3.4}S_{7.5}$ comparable with Wang's $Cu_2Sn_{3.34}S_{7.68}$. Cu_2SnS_3 (Wang, 1974; Moh, 1976) has a triclinic superstructure of sphalerite, pseudomonoclinic in symmetry with cell dimensions of a = 6.640, b = 11.53, c = 19.91 Å, $\alpha = 90^{\circ}$, $\beta = 109.45^{\circ}$, and $\gamma = 90^{\circ}$ which are in good agreement with published data. Both phases are stable in the temperature range of this study and have no detectable range of solid solution. The composition of $Cu_2Sn_2S_5$ produced an assemblage of $Cu_2Sn_3S_7$ and Cu_2Sn_3 .

Cu₄SnS₄ was successfully synthesized, but with much difficulty from the required initial charge. A prolonged period of heat treatment of 120 days, compared to 60 days for the other phases, with intermediate grinding was necessary. It is orthorhombic with a = 13.50, b = 7.66, and c = 6.395 Å, and the formula derived from probe data is Cu_{3.9} Sn_{1.1}S₄. This phase forms binary assemblages with Cu₂S, SnS, Cu₂SnS₃, and Cu₅Sn₂S₇.

The other two copper-tin sulphides in the system at 500 °C have compositions of Cu₁₀Sn₂S₁₃ and $Cu_5Sn_2S_7$ assigned on the basis of probe compositions of Cu₉·₇Sn_{2.2}S₁₃ and Cu_{4.9}Sn₂S₇. The former is comparable to $Cu_{9.67}Sn_{2.33}S_{13}$ (Wang, 1976), and the latter is identical with Wang's $Cu_5Sn_2S_7$ (1977). $Cu_{10}Sn_2S_{13}$ is tetragonal with a = 9.540and c = 10.93 Å which match well with a = 9.53and c = 10.93 Å of $Cu_{9.67}Sn_{2.33}S_{13}$. According to Wang (1976), $Cu_{9.67}Sn_{2.33}S_{13}$ coexists with CuS in samples of compositions with Cu/Sn ratio higher than 4.15, and coexists with Cu₂SnS₃ when the ratio is lower than 4.15 at 500 °C. As shown in fig. 1, $Cu_{10}Sn_2S_{13}$ does not coexist with Cu_2SnS_3 in any compositional region. $Cu_{10}Sn_2S_{13}$ is stable up to 641 ± 3 °C. With the melting of CuS at 507 °C (Kullerud, 1965), the equilibrium assemblages of $Cu_{2-x}S + Cu_{10}Sn_2S_{13} + CuS, CuS + Cu_{10}Sn_2S_{13} +$ S(L), and $Cu_{10}Sn_2S_{13} + Cu_5Sn_2S_7 + S(L)$ at 500 °C are replaced by the assemblage $Cu_{2-x}S + Cu_5Sn_2$ $S_3 + S(L)$ at 650 °C, the upper temperature limit reached in this study.

Attempts to index the X-ray powder diffraction pattern of $Cu_5Sn_2S_7$ were not successful. Its *d*values and relative intensities are $(d \text{ Å}, (I/I_0))$ 5.251(5), 4.911(5), 4.887(5), 4.724(5), 4.202(5), 3.292(5), 3.109(100), 3.034(5), 2.949(5), 2.882(5),

SHORT COMMUNICATIONS

Table I. X-ray Powder Diffraction Data of Cu-Sn Sulfides.

Cu ₄ SnS ₄				Cu ₂ SnS ₃				Cu2 ^{Sn3S7}				Cu ₁₀ Sn ₂ S ₁₃			
d(meas), Å	1/1 ₀	d(calc), Å	(hk1)	d(meas), Å	1/1 ₀	d(calc), Å	(hk1)	d(meas), Å	1/1 ₀	d(calc),Å	(hk1)	d(meas), Å	1/10	d(calc), Å	(hk])
4.670	5	4.642	201	5,468	10	5.489	110	5.985	40	5.972	200	5.495	15	5.465	005
3.850	10	3.831	020	4.230	10	4.234	023	4.762	5	4.775	112	3.663	60	3.643	003
3.381	90	3,375	400	3.641	5	3.633	024	3.673	10	3.676 3.666	020 202	3.224	10	3.205	113
3.326	85	3.331 3.317	220 311	3.138	100	3.137 3.121	204 200			3.141	204	3.016	100	3.017	130
3.196	40	3,193	121	2 640	10	2.847	223	3.134	100	3.130	220	2.909	15	2.908 2.895	131 023
3.110	70	3.111	102	2.840	10	2.831	124	3.004	15	3.005	004	2.748	60	2.749	032 004
2.965	10	2.954	221	2.714	50	2.718	206	2.600	90	2.599	404				
2.884	60	2.883	112	2.611	5	2.617	043	2.385	20	2.387 2.383 2.375	224 204 402	2.312	25	2.314 2.301	140 124
2.702	5	2.704	212	2.439	5	2.454 2.419	044 213	2.326	5	2.3/3	313	1.999	40	1.995	043
2.657	50	2.654	321	2.289	10	2.299 2.273	143 223	2.124	5	2.113	602	1.898	40	1.908	340 234
2.605	15	2.606	302			2.163	314			2.003	006			1.901	
2.495	10	2.487	501	2.165	10	2.161	150	2.003	50	1.991	600	1.872	60	1.879 1.871	341 150
2.372	40	2.372 2.366	031 511	2.121	10	2.122 2.117	244 240	1.840	100	1.841	226 040 404	1.833	15	1.840	243
2.311	15	2.307	222	2.059	10	2.066 2.055	323 324			1.832		1.741	25	1.736	334
2.159	15	2.159	610			2.055		1.760	20	1.756 1.751	240 620	1.666	40	1.675	126
2.103	10	2.098	331	1.967	10	2.966	242 326	1.590	15	1.578	802			1.664	153
2.069	15	2.063	502	1.920	100	1.922	060	1.570	10	1.570	408 440	1.592	20	1.603 1.590	226 060
2.048	10	2.045	411	1.890	10	1.898 1.885	302 321			1.565	440	1.574	20	1.573 1.567	061 335
2.038	15	2.036 2.030	430 113	1.835	5	1.837	336					1.549	10	1.544	154
1.996	25	1.992	512	1.696	10	1.698 1.693	304 346								
1.967	5	1.974 1.965	132 213	1.638	80	1.643 1.636	414 260 2012								
1.948	90	1.940	620			1.636	2012 426								
1.918	20	1.915 1.913	040 232	1.570	20	1.575	426 400								
1.873	20	1.868 1.863	313 023												
1.821	5	1.824	332												
1.802	100	1.802 1.795	403 223												
1.726	5	1.721	323												
1.695	25	1.699 1.687	341 800												
1.679	5	1.673	503												
1.664	30	1.666 1.663	440 721												
1.656	15	1.659	622												
1.636	10	1.632	632 142												
1.621	35	1.614	712												
1.610	10	1.605 1.599	532 004												
1.549	10	1.559 1.447 1.543	204 603 342												

2.694(5), 2.484(5), 2.452(5), 2.401(5), 2.328(5), 2.274(5), 2.241(5), 2.179(5), 2.043(5), 1.997(5), 1.906(90), 1.858(5), 1.685(5), 1.627(7), and 1.559(15). Judged from major reflection lines (3.109, 2.694, 1.906, 1.627, and 1.559), this phase may also have a superstructure derived from sphalerite.

Among the copper-tin sulphides, Cu_2SnS_3 and Cu_3SnS_4 have been identified in natural assemblages. Mohite (Cu_2SnS_3) (Kovalenker *et al.*, 1982) has cell dimensions of a = 6.64, b = 11.51, c =

19.93 Å, $\alpha = 90^{\circ}$, $\beta = 109.75^{\circ}$, and $\gamma = 90^{\circ}$, which are in good agreement with results of synthetic Cu₂SnS₃ obtained in this study. Kuramite (Kovalenker *et al.*, 1979) has a reported composition ranging from Cu_{2.6}(Fe,Zn)_{0.4}SnS₄ to Cu_{2.8} (Fe,Zn)_{0.2}SnS₄. Its (Fe,Zn)-free equivalent in the system Cu-Sn-S was produced by sulphidization of Cu₄SnS₄ at 90 °C and has a Cu/Sn ratio of 3.278 (Moh, 1982). According to Moh, this phase breaks down at temperatures above 330 °C.

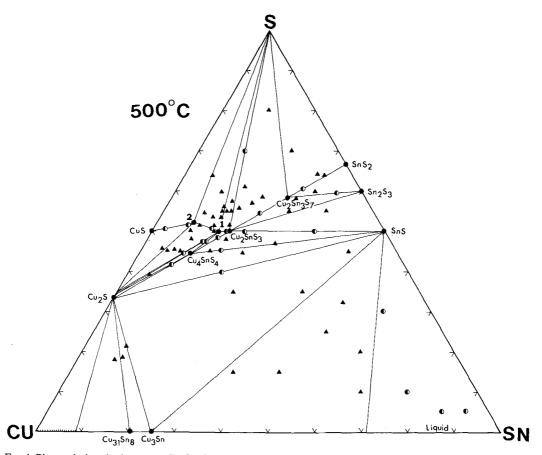


FIG. 1. Phase relations in the system Cu-Sn-S at 500 °C. In the figure, solid circles, half-filled circles, and solid triangles represent one-, two-, and three-phase assemblages, respectively. '1' and '2' denote Cu₅Sn₂S₇ and Cu₁₀Sn₂S₁₃.

REFERENCES

- Jaulmes, P. S., River, J., and Laruelle, P. (1977) Acta Crystallogr. B33, 540-2.
- Kovalenker, V. A., Evstigneeva, T. L., Troneva, N. V., and Vyal'sov, L. N. (1979) Zap. Vses. Min. Obshch. 108, 564-9.
- Molov, V. S., Evstigneeva, T. L., and Vyal'sov, L. N. (1982) Ibid. 111, 110-4.
- Kullerud, G. (1965) Freiberger Forshungshefte, 186C, 145-60.
- Moh, G. H. (1960) Neues Jahrb. Mineral. Abh. 94, 1125-46.

- ------(1963) Carnegie Inst. Washington Yearb. **62**, 197–200.
- -----(1976) Neues Jahrb. Mineral. Abh. 128, 115-88. -----(1982) Ibid. 144, 291-342.
- Sobott, R. J. G., and Teh, G. H. (1977) Ibid. 131, 23-6. Wang, N. (1974) Neues Jahrb. Mineral. Mh. 424-31. —(1976) Ibid. 241-7.
- ----- (1977) Neues Jahrb. Mineral. Abh. 131, 26-7.
- ——(1981) Neues Jahrb. Mineral. Mh. 337–43.

[Manuscript received 28 October 1985; revised 30 December 1985]

© Copyright the Mineralogical Society

KEYWORDS: copper, tin, sulphides, system Cu-Sn-S, phase relations.

Institute of Geochemistry, Academia Sinica, Guiyang, Guizhou, People's Republic of China

Idaho Geological Survey, Moscow, Idaho 83843 USA

Department of Geology, University of Maryland, College Park, Maryland 20742 USA DAQING WU

CHARLES R. KNOWLES LUKE L. Y. CHANG