Mafic Granulites and Clinopyroxenite Xenoliths from the Transdanubian Volcanic Region (Hungary): Implications for the Deep Structure of the Pannonian Basin

A. Embey-Isztin, H. Poultidis, H. G. Scharbert and H. Dietrich
Department of Mineralogy and Petrology, Hungarian Natural History Museum, 14-16 Muzeum korut, H-1088 Budapest, H-1370 Pf: 330, Hungary
Steyrerstrasse 14, A-4531, Kematen, Austria
Institute of Petrology, University of Vienna, Dr. Karl Lueger Ring 1, A-1010 Vienna

Abstract: The Transdanubian Volcanic Region (TVR) is composed mainly of Pliocene alkali basalts, basanites, olivine basalts and olivine tholeiites, as well as rare nephelinites. The partial melting and genesis of alkali basaltic liquids is a consequence of an upwelling of the upper mantle which also caused thinning of the lithosphere and recent sinking of the Pannonian Basin.

Four different types of lower crustal and upper-mantle xenoliths are found within the TVR: garnet-free and garnet-bearing granulites, clinopyroxenites and spinel lherzolites. We present mineralogical and geochemical data on granulite facies and clinopyroxenite xenoliths from three localities in the Hungarian part of the TVR (Bondoróhegy, Szentbékálla and Szigliget). It is concluded that, whilst the protoliths of the granulite facies xenoliths were tholeiitic igneous rocks and could be part of an ancient crust, the clinopyroxenite xenoliths represent recent underplating and may have formed from an alkali basaltic liquid similar to the host lava. Planar contact relations between clinopyroxenites and spinel lherzolites as observed in composite xenoliths, as well as high Al-contents in clinopyroxenes, point to a high-pressure genesis in the upper mantle for these rocks. In contrast, geobarometrical estimates yielded only a moderate pressure range characteristic of lower crustal levels for the garnet-free granulite xenoliths (7–9 kbar). Nevertheless, two-pyroxene geothermometry yielded high temperatures of equilibration (>900°C) for these xenoliths, probably caused by advective heat transfer connected with underplating and in agreement with the high present-day geothermal gradient of this region. In the Central Range localities only garnet-free granulite xenoliths occur, whereas at the border of the TVR both garnet-free and garnet-bearing granulite facies nodules are found. It is possible that the incoming of garnet is retarded by higher temperatures in the lower crust below the Central Range.

It is also suggested that the difference in seismically measured crustal thickness between the Central Range and adjacent basin areas may be connected with different thermal conditions below these regions and that the seismically defined Moho and the petrological Moho do not necessarily coincide.

Keywords: granulite • clinopyroxenite • xenolith • Transdanubian Volcanic Region • Hungary

Mineralogical Magazine; September 1990 v. 54; no. 376; p. 463-483; DOI: 10.1180/minmag.1990.054.376.12
© 1990, The Mineralogical Society
Mineralogical Society (www.minersoc.org)