Abstract: Effenbergerite, ideally BaCu[Si4O10], structure determined by single crystal X-ray methods in space group P4/ncc, a = 7.442(2)Å, c = 16.133(5)Å, V = 893.50 Å3 Z = 4, is a new mineral from the Wessels mine, Kalahari Manganese Field, South Africa. It is associated with native copper, calcite, quartz and clinozoisite within pectolite veinlets, embedded in a matrix of braunite, sugilite and hausmannite. Effenbergerite occurs as transparent blue platelets with perfect cleavage parallel to {001} in sizes up to 8.0 × 8.0 × 0.1mm. It has a pale blue streak, subconchoidal fracture, a calculated density of 3.52gcm−3 and an estimated Mohs' hardness of 4–5. Effenbergerite is uniaxial negative with ω = 1.633(2), ε = 1.593(2), strongly pleochroic from intense blue (ω) to nearly colourless (ε). The strongest lines in the X-ray powder diffraction pattern (with refined lattice parameters a = 7.440(1)Å, c = 16.133(2)Å) are: (dobs/Iobs/hkl) (8.0624/100/002), (4.0325/39/004), (3.5443/29/104), (3.1998/44/114), (2.6892/21/006), (2.3943/41/116), (2.0169/34/008), (1.9466/22/108) and (1.4802/21/2.0.70).
Effenbergerite is the natural analogue to synthetic BaCu[Si4O10], isotypic with SrCu[Si4O10] and CaCr[Si4O10] as well as with the minerals cuprorivaite, CaCu[Si4O10] and gillespite, BaFe[Si4O10]. The structure consists of silicate sheets [Si8O20]8− parallel (001) formed by corner-linkage of silicate 4-membered rings. The copper(II) atom is nearly planar 4-coordinated; the barium atom has a distorted cubelike environment of oxygen atoms. The mineral is named for Dr. Herta S. Effenberger of the University of Vienna, Austria.
Mineralogical Magazine; December 1994 v. 58; no. 393; p. 663-670; DOI: 10.1180/minmag.1994.058.393.17
© 1994, The Mineralogical Society
Mineralogical Society (www.minersoc.org)