Fluid-rock interaction across a greenschist- to granulite-facies transition, Reynolds Range, central Australia: implications for regional-scale fluid flow in LP/HT orogenic belts

I.S. Buick

I. Cartwright

Department of Geology, La Trobe University, Bundoora, Vic. 3083, Australia. Department of Earth Sciences, Monash University, Clayton, Vic. 3168, Australia.

Introduction

The determination of the length-scale, timing and mechanisms of fluid infiltration is a major goal of metamorphic petrology. Fluid flow in metamorphic terrains may occur isothermally or along temperature gradients. Fluid flow along temperature gradients is likely to occur during contact metamorphism (Dipple & Ferry 1992) and also may occur during low-pressure/high-temperature (LP/HT) regional metamorphism. Here we present petrological and stable isotopic constraints on the fluid/rock interaction history of the Reynolds Range Group, a mid-Proterozoic LP/ HT metamorphic belt from the Arunta Complex of central Australia.

Regional Setting

The Reynolds Range Group (RRG), a metamorphosed cover sequence from the polymetamorphosed Reynolds Range, consists of interlayered quartzites, pelites and carbonates that are continuous along strike for c.100 km. Metamorphism of the RRG commenced with M2₁ contact metamorphism around early granites. M2₁ assemblages were partially overprinted during regional M2₂-D2₂ metamorphism that ranged from greenschist- ($c.400^{\circ}$ C) to granulite-($c.700-750^{\circ}$ C) facies conditions at 4 to 5 kbar. M2₂ isograds intersect the strike of the Reynolds Range, and map-scale F2₂ folds, at moderate to high angles (Fig.1). The mineral assemblages and

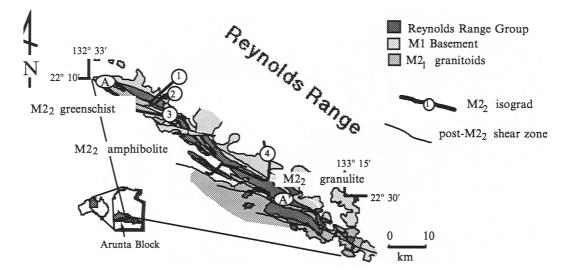


FIG. 1. Locality map, showing the Reynolds Range. M2₂ isograds are as follows: 1 = sphene-in isograd in calcite-rich marbles; 2 = k-feldspar + anorthite-in isograd in calcite-rich marbles; 3 = biotite-in isograd in metapelites; 4 = sillimanite-in isograd in metapelites.

fluid flow history described below are attributed to the M2-D2 tectonic cycle.

Petrology of and stable isotope geochemistry of marbles and metapelites

The marbles and metapelites crop out at M2₂ greenschist-, amphibolite- and granulite-facies grades, making it possible to examine the prograde history of M2₂ fluid/rock interaction. The fluid composition constrained by the low-variance mineral assemblages that occur in interlayered calcite- and dolomite-rich marbles and metamorphosed calcareous marls change from $XCO_2 < 0.05$ at greenschist-facies conditions, to $0.25 < XCO_2 < 0.75$ and, locally, $0.95 < XCO_2 < 1.0$ at granulite-facies grades. Over the same grade transition metapelitic rocks change from shales to migmatilic gneisses. At the highest grades the metapelites melted under low- a_{H_2O} vapour-absent conditions.

At greenschist-facies grades the marbles and metapelites have lower δ^{18} O values (δ^{18} O(carb) = 15.8 to 19.7 V-SMOW, mean = $17.7 \pm 1.1\%$ 1 σ ; $\delta^{18}O(WR \text{ pelite}) = 6.4 \text{ to } 15.3\%, \text{ mean} =$ $11.7 \pm 1.7\%$ 1 σ) than those of typical of lowgrade metasediments elsewhere, but similar d13C values (d13C(carb) = -1.4 to 0.7 PDB, mean = $0.0 \pm 0.3\%$ 1 σ). The amount of δ^{18} O-heterogeneity of these greenschist-facies rocks, alone, is comparable to the total heterogeneity in stable isotope composition that have been recorded in similar rocktypes from other contact- or regionalmetamorphic terrains across large metamorphic grade changes. The lowest δ^{18} O values indicate that these rocks have experienced significant fluid/ rock interaction. Marbles and metapelitic rocks at amphibolite- to granulite-facies grades have: a) similar average stable isotope values, and b) similar isotopic heterogeneity to greenschist-facies stratigraphic equivalents ($\delta^{18}O(\text{carb}) =$ 13.1 to 20.5% mean = 17.1% 1σ , $\delta^{13}C(\text{carb})$ =-3.1 to 1.4‰, mean $=-0.3\pm0.8$ 1 σ ; δ^{18} O (WR pelite) = 6.7 to 14.3‰, mean = $10.6 \pm 2.0 \ 1\sigma$). The variation of oxygen and carbon stable isotope values with increasing M2₂ grade define subhorizontal bands (Fig. 2).

Discussion

The recognition of low- δ^{18} O metacarbonates and metapelites at regional greenschist- to granulitefacies grades has important implications for the fluid-rock interaction history of the Reynolds Range Group, and other LP/HT metamorphic belts. The distribution of low-variance high-XCO₂ mineral assemblages in the marbles at medium to

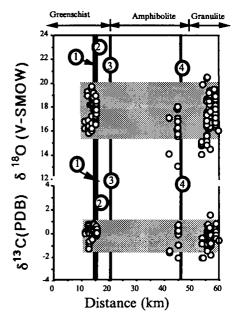


FIG. 2. Stable isotope traverse for marbles with increasing grade along the length of the Reynolds Range (traverse A-A' in Figure 1). Isograds are numbered as for Figure 1.

high grades, and the lack of systematic lowering of δ^{18} O and δ^{13} C values for both marbles and metapelites with increasing regional grade implies that there was little fluid-rock interaction in the marbles or metapelites along the prograde M2₂ P-T path at grades higher than the greenschist facies. We attribute the lowering of δ^{18} O values throughout the Reynolds Range to channelled fluid flow that was associated with M2₁ contact metamorphism around early granites. These granites crop out from M2₂ greenschist- to upper amphibolite-facies grades, and are associated with high-temperature mineral assemblages that are partially preserved through the regional metamorphic overprint (Buick and Cartwright, 1994; Buick et al., 1994). At the highest M2₂ grades a similar early history of contact metamorphic fluid/ rock interaction is likely, even though M2₁ granites do not occur at present-day erosional levels.

References

- Buick, I.S. and Cartwright, I. (1994) J. Geol. Soc. Lond., 151, (in press).
- Buick, I.S., Cartwright, I., Hand, M. and Powell, R. (1994) J. Met. Geol. (in press).
- Dipple, G.M. and Ferry, J.M. (1992). Geochim. Cosmochim. Acta, 56, 3539-50.