Effect of conductive cooling on chemistry of midocean ridge hydrothermal fluids: experimental and theoretical constraints

K. Ding W.E. Seyfried Jr.

Department of Geology and Geophysics, University of Minnesota, Minneapolis, MN 55455, USA.

fluids, we performed a series of computer based simulations using a Newton-Raphson iterative technique to solve appropriate mass balance, charge balance and mass action equations as a function of temperature. In the simulations, a 0.5M NaCl fluid and a pH_(in-situ) of 5.0 was allowed to equilibrate with hematite-magnetitepyrite-chalcopyrite at 400°C, and then cooled isobarically to 300°C. Different paths in terms of pressure and chlorinity, which range from 500 to 300 bars, and 0.3 to 1.0 M respectively, were explicitly examined. Since hydrothermal up-flow zones at mid-ocean ridges are likely characterized by very high time-integrated fluid/rock ratios, it is assumed here that fluids after having equilibrated at depth in the subseafloor reaction zone are largely unaltered by chemical exchange and wallrock reaction on ascent to seafloor. Thermodynamic data for aqueous Fe, Cu species, and salting-out effects on dissolved H_2 and H₂S are taken from results of our previous experiments, while all other thermodynamic data are from 'SUPCRT92' (Johnson et al, 1992 and references therein). An extended form of the Debye-Huckel equation was used to determine activity coefficients for aqueous species at different temperatures and bulk fluid chemistry.

Methods

Introduction

Hot spring fluids issuing from the vents have been sampled at numerous sites on actively spreading

mid-ocean ridges. The chemistry of these fluids

has been extensively studied to provide insights on

the processes occurring at depth in the ocean crust,

and to constrain the hydrothermal flux of elements

into and out of seawater. Although measured temperatures of vent fluids are generally around

350°C or less, these fluids have experienced much

higher temperatures as evidenced by a number of chemical geothermometers. The discrepancy

between measured temperatures and tempera-

tures inferred from the dissolved concentrations

of temperature dependent species can be largely

attributed to conductive cooling of high temperature fluids in up-flow zones. However, before one

can use the chemistry of hot spring fluids to access

unambiguously conditions and processes in

subseafloor reaction zone, it is important to

understand the role of heat loss on vent fluid

chemistry. Based on recent results of mineral solubility experiments designed to determine and

retrieve thermodynamic data for H₂, H₂S, and Fe-,

and Cu-bearing species, we can now constrain the

effect of heat loss by conduction on the chemistry

of hot spring fluids.

To better illustrate the role of cooling on dissolved metals and gases in up-flow zone hydrothermal **Results and discussion** Table 1 shows results for cooling from 400°C to 300°C, at 500 bars and 0.5M NaCl. As indicated,

dissolved concentrations of H₂S, Fe, and Cu are

TABLE 1. Predicted change in concentrations of dissolved species resulting from conductive cooling in up-flow zones at 500 bars, and seawater chlorinity

T°C 400	H ₂ S(mM) 9.47	H ₂ (μM)	Fe(mM)Cu(µM)	pH _(in-situ)		рН _(25°С)	Redox
				81	5.00	3.60	НМРу
375	9.46	58	1.92	55	4.59	3.56	Py
350	9.37	85	1.87	27	4.23	3.44	Рy
300	9.23	142	1.76	3.5	3.92	3.28	Ру

231

FIG. 1. Predicted changes for the effect of conductive cooling on dissolved concentrations of Cu, $H_2(aq)$, (in A), and Fe, $H_2S(aq)$ (in B) for mid-ocean ridge hot spring fluids at 500 bars, and seawater chlorinity. Both $pH_{(in-situ)}$ and $pH_{(25^\circC)}$ values are shown in A (dash line). Reaction zone and vent temperatures are indicated by dot-dash lines.

systematically decreased with decrease in temperature, while H₂ shows a strong increase in concentration with cooling. Both pH(in-situ) and pH_(25°C) values are also observed to decrease substantially. Clearly, it can be demonstrated that a fluid evolves towards becoming increasingly reducing and acidic as a result of conductive cooling. As a consequence of this, the fluid maintains virtually all dissolved Fe, while losing Cu owing to the effects of temperature, redox, and pH on the relative solubilities of chalcopyrite and pyrite. In effect, slight, but significant precipitation of pyrite generates more H₂ and lowers fluid pH, which prevents further precipitation of Fe. Reducing conditions, in contrast, constrain the solubility of Cu-bearing minerals and cause dissolved Cu to be removed from the fluid.

As demonstrated by Fig. 1B. species such as Fe, and H₂S, which are abundant in source fluid, are relatively insensitive to the cooling, while trace components, H₂, and Cu show large departures from their original concentrations, even by cooling just to 350° C (see Fig. 1A). Owing to temperature dependent precipitation of chalcopyrite and pyrite. the fluid becomes increasingly acidic, which may contribute to dissolution of previously precipitated sulfide phases (i.e. sphalarite), especially at relatively low temperatures. That Fe and H₂S, are not greatly affected by cooling indicates that these species can be relied on with confidence to infer reaction zone conditions (e.g. Fe pHindicator and H₂S-geothermometer (Ding and Seyfried, 1992)). Since H_2 and Cu concentrations are predicted to change significantly during cooling, these species must be used with caution to predict condition in subseafloor reaction zones. These species, however, can be still used to constrain lower limits of logf₀, or/and minimum temperatures.

Reference

- Ding K., and Seyfried W. E., Jr. (1992) Geochim. Cosmochim. Acta, 56, 3681-92.
- Johnson J. W., Oelkers E. H., and Helgeson H. C. (1992) Computers Geosci., 18, 899-947.