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An evolutionary approach to thermal history 
modelling with fission track data 

K. GaHagher School of Geological Sciences, Kingston University, Kingston, 
KT1 2EE, England 

Introduction 

Recent advances in our understanding of fission 
track annealing have led to empirical predictive 
models such that, given various assumptions, it is 
possible to predict the expected fission track 
parameters (age, track length distribution) for a 
given thermal history (Laslett et al. 1985; Green et 
al. 1989; Carlson 1991). In practice, however, it is 
the fission track parameters that are measured, and 
the thermal history is unknown. In sedimentary 
basins, the thermal history is intimately linked to 
the burial history and a reasonable reconstruction 
of both is often possible when a suite of downhole 
samples is used. However, in situations where only 
surface samples are analysed, the thermal history 
and cooling/exhumation rates must often be 
constrained from the fission track data alone. In 
principle, analytical inversion methods could be 
used to determine the thermal history directly from 
the data, but the mathematical formulations are 
nonqinear. This non-lineadty can lead to computa- 
tional problems with analytical methods (e.g. 
instabilities in matrix inversions and partial 

�9 derivative calculations, an initial guess very close 
to the true thermal history). The resulting method 
may be unstable and a rigorous resolution analysis 
of the solution is difficult. Alternatively, more 
robust optimisation methods which avoid many of  
these pitfalls can be used. 

Random Monte Carlo 

Random Monte Carlo methods have been applied 
to this problem (e.g. Lutz and Omar t990). The 
basis of this approach is that a temperature history 
is selected at random from within specified bounds 
and fission track parameters are calculated for this 
temperature history. This process is repeated until 
either a temperature history is found which 
predcits the data to a satisfactory level, or the 
user decides to go home. The advantages of  this 
approach are that all that is required are the 
specification of the forward problem (i.e. how to 
calculate fission track parameters for a given 
thermal history) and how to determine how well 
the predicted paramaters fit the observations. We 

readily avoid problems with numerical stability 
and linearising assumptions. However, one of the 
drawbacks of random Monte Carlo simulation is 
that every model thermal history is completely 
independent of the others. Thus, we may find the 
best data fitting thermal history after 1, 10 or 1 x 
10 6 simulations - there is no guarantee or sense of 
convergence. In other words, Random M o n t e  
Carlo is very stable and safe, but inefficient. 

Genetic algorithms 

Unlike the more conventional random Monte 
Carlo methods, genetic algorithms actually learn 
the form of the better data-fitting thermal histories 
and the progressive sampling is geared to finding 
the more optimal thermal histories. Gallagher and 
Sambridge (1994) give a recent overwiew of genetic 
algorithms and their applications in the Earth 
Sciences. Their implementation is initially very 
similar to Random Monte Carlo. Bounds on 
possible values of temperature and time are 
specified and points selected randomly from 
within these bounds. However, after an selection 
of initial number of random thermal histories (i.e. 
starting population), these are allowed to breed. 
The breeding is biassed so the better data fitting 
models stand more chance of being parents, the 
idea being that the better parents will lead to better 
children, i.e survival of the fittest (the fittest being 
the best thermal history). Having generated a 
population of  children, these can in turn can 
become parents and have offspring. This proce- 
dure is repeated until a satisfactory thermal history 
is found. However, because genetic algorithms use 
the information gained by this population sampling 
to generate better models, they are considerably 
more efficient than random Monte Carlo. 

Fig. 1 shows 200 thermal histories generated 
using both random Monte Carlo and a genetic 
algorithm using synthetic fission track data as 
input,  generated from a simple heating-cooling 
thermal history. The genetic algorithm clearly 
exhibits more efficient sampling of  the .possible 
thermal history models (more than 2xl0" in  this 
case), and, for much the same amount of  
computational effort, achieves a better thermal 
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FiG. 1. Performance of random Monte Carlo and a genetic algorithm, using synthetic data (fission track age 
and track length distribution). 200 simulations were run in each case, with 10 iterations (20 models in each) of 
the GA. The upper panel shows all simulations with time:temperature points selected from within the 2 boxes 
shown, and the fighter fines generally represent better models. The true answer is shown in the middle panel 
(dark line) and the best thermal history (light line) for each method. Notice how the spread in solutions is 
reduced for the GA and most are similar to the true solution. The predicted and 'observed' data are 

summarised in the lower panel. 

history. The overall spread in the resultant thermal 
histories is also an indication of  the resolution of 
this best models. 

It has been shown elsewhere (Gallagher et al. 
1991, Sambridge and Gallagher 993) that as the 
number of  unknowns increases (i.e., number of 
time:temperature points) the performance of  
genetic algorithms over random Monte Carlo 
increases exponentially. However, that does not 
mean that we should then always use many 
time:temperature points. The best philosphy is to 
use the minimum number required to achieve an 
adequate fit to the data. 

Summary 

Genetic algorithms provide an extremely efficient 
method to assess the information on the thermal 
history contained in measured fission track data. 

An overview of  the methodology will be given, 
using both synthetic and real data examples. The 
fact that many (> 1000) thermal histories can be 
tested rapidly allows the spread in good data 
fitting solutions to be examined directly to assess 
the characteristics required to fit the observed 

data. The methodology may be applied to any 
type of  thermochronological data, although 
fission track data are particularly useful because 
of  the information on cooling rates contained in 
the length distribution. 
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