## The composition of the sub-continental mantle: evidence from magmatic rocks

## C. Hawkesworth S. Turner

Department of Earth Sciences, The Open University, Milton Keynes, MK7 6AA

The extent to which the sub-continental mantle differs from that in oceanic areas has been the subject of considerable debate. Seismic studies indicate that in many areas the continents are characterised by deep roots (Jordan, 1988), and data on mantle xenoliths confirm that at least regionally the uppermost mantle is relatively depleted in major elements (Herzberg, 1993). Re-Os isotope results have established that such depletion events are typically as old as the age of the overlying crust (Pearson et al., 1994), and the most depleted material is confined to Archaean areas. However, the xenolith record is clearly restricted to those areas of suitable inclusion-rich kimberlites and alkalic basalts, and there have been a number of recent attempts to evaluate the nature of the sub-continental mantle from the much more widespread volcanic record.

Continental flood basalts (CFB) are the most

upper crust

4.00

striking manifestation of continental magmatism, and many CFB have isotope and trace element signatures that differ from those of oceanic basalts. A recent review of selected data sets from the Mesozoic and Tertiary CFB confirmed significant differences in their major and trace element compositions compared with basalts erupted through oceanic lithosphere (Turner and Hawkesworth, 1994). In general, those CFB suites characterised by low Nb/La, high <sup>87</sup>Sr/<sup>86</sup>Sri and low <sup>143</sup>Nd/<sup>144</sup>Ndi, tend to exhibit relatively low TiO<sub>2</sub>, CaO/Al<sub>2</sub>O<sub>3</sub>, Na<sub>2</sub>O and/or Fe<sub>2</sub>O<sub>3</sub>, and relatively high SiO<sub>2</sub>. In contrast, those which have high Nb/La, low  $^{87}$ Sr/ $^{86}$ Sri and high <sup>143</sup>Nd/<sup>144</sup>Ndi ratios, like the upper units in the Deccan, have major and trace element compositions similar to oceanic basalts. It would appear that those CFB that have distinctive isotope and trace element ratios also exhibit distinctive major



mixing processes. Melts of depleted peridotite, on the other hand, will have lower Na and Fe for a given MgO content than those from fertile (asthenospheric) peridotite.

element contents, suggesting that major and trace elements have not been decoupled significantly during magma generation and differentiation.

When compared (at 8% MgO) with oceanic basalt trends, the displacement of many CFB to lower Na<sub>2</sub>O, Fe<sub>2</sub>O<sub>3</sub>\*, TiO<sub>2</sub> and CaO/Al<sub>2</sub>O<sub>3</sub>, but higher SiO<sub>2</sub>, at similar Mg#, is not readily explicable by crustal contamination. Rather, it reflects source composition and/or the effects of the melting processes. These data have therefore been compared with the results of recent experimental studies (Falloon et al., 1988; Kushiro, 1990, Takahashi and Kushiro, 1983), and melting of fertile peridotite at high temperatures and pressures, as in a plume beneath the continental lithosphere, would produce basalts with relatively low  $SiO_2$  and high  $TiO_2$  and  $Fe_2O_3$ . Moreover, the effects of increasing the degrees of melting at higher pressures are to shift the the melt compositions to higher Fe<sub>8.0</sub> and  $CaO/Al_2O_3$ , and lower Na<sub>8.0</sub> and Si<sub>8.0</sub>, contrary to what is observed in many CFB. However, experimental melts of peridotite become increasingly TiO<sub>2</sub>-, Na<sub>2</sub>O- and Fe<sub>2</sub>O<sub>3</sub>-poor, and have low CaO/Al<sub>2</sub>O<sub>3</sub>, if the peridotite has been previously depleted by melt extraction. Melts of hydrated, depleted peridotite are also characterised by higher SiO<sub>2</sub>, and lower Fe<sub>2</sub>O<sub>3</sub> and CaO contents. Thus, it is argued that the source of many CFB are shallow level, melt depleted portions of sub-continental mantle. Their enriched radiogenic isotope signatures indicate that such source regions are old, and that they contain relatively high incompatible element abundances. This combination of major element depletion and trace element enrichment is a feature of many mantle xenoliths, and it is further inferred that the enrichment of incompatible elements included the introduction of small amounts of volatiles, since melt generation is likely to have taken place at the volatiles-present solidus.

Finally, such arguments on the nature of the source regions for CFB will be broadened to include continental margins, and the extent to which new continental crust is generated from similar trace element enriched source regions in the uppermost mantle. In many areas subductionrelated processes appear to have been responsible for the development of incompatible element enriched portions of the sub-continental mantle. In addition, however, the degree of trace element fractionation between the bulk continental crust and depleted upper mantle is consistent with a two stage model in which new crust is generated from previously enriched source regions in the upper mantle.

## References

- Falloon, T.J., Green, D.H., Hatton, C.J. and Harris, K.L. (1988) J. Petrol., 29, 1257-82.
- Herzberg, C.T. (1993) Earth Planet. Sci. Lett., 120, 13-29.
- Jordan, T.J. (1988) J. Petrol Spec. Iss., 11-37.
- Kushiro, I. (1990) J. Geophys. Res., 95, 15929-39.
- Pearson, D.G., Shirey, S.B., Carlson, R.W., Boyd, F.R., Pokhilenko, N.P. and Shimizu, N. (1994) Geochim. Cosmochim. Acta, in press.
- Takahashi, E. and Kushiro, I. (1983) Amer. Mineral., 68, 859-79.
- Turner, S. and Hawkesworth, C.J. (1994) Lithos Spec. Vol. in press.