δ^{13} C in low temperature, CO₂-charged waters: a need for consistency with carbonate chemistry

P.M. Leśniak

Institute of Geological Sciences, Polish Academy of Sciences, Żwirki i Wigury 93, 02 089 Warszawa, Poland.

Introduction

Much data on carbon isotopes in CO₂-charged waters have been published. However, the procedure applied for the interpretation of carbon isotope measurements is frequently the same as in typical groundwaters with low P_{CO_2} pressures ($\sim 10^{-3}$ MPa). The obtained δ^{13} TDC values are interpreted in terms of δ^{13} HCO₃, which is inconsistent with the carbonate chemistry based on pH and alkalinity measurements made in-situ. Therefore, some examples are critically evaluated and a correct interpretation of the isotopic data is given.

Discussion

When waters containing CO₂ gases rise to the surface the loss of hydrostatic pressure enables the separation of a CO₂ gas phase. Measurements of δ^{13} C of total dissolved carbonates (TDC) and/or δ^{13} C of the gas itself are used to characterise the carbonate system of interest. These two measurements, if interpreted properly completely define the carbonate system. Therefore, if δ^{13} TDC, $\delta^{13}CO_2(g)$ and pH are measured and chemical analyses made at the outflow, it is possible to calculate δ^{13} HCO₃. δ^{13} HCO₃ can also be calculated from $\delta^{13}CO_2(g)$ and a known fractionation factor between CO_2 gas and bicarbonate. If we assume emergence temperature as the temperature of the last equilibration, δ^{13} HCO₃ calculated in this way can be compared with $\delta^{13}HCO_3^$ calculated from the measurement of δ^{13} TDC and carbonate species distributions. Therefore, the isotopic equilibrium between bicarbonate and CO_2 gas can be verified.

In several works concerned with CO₂-charged waters there is the wrong assumption that the carbon isotopic composition of the precipitated in the field carbonates (BaCO₃ or SrCO₃) is equivalent to the isotopic composition of HCO₃. However, in several cases of low carbonated, low pH waters charged with CO₂ gas, CO₂(aq) concentration is higher than HCO₃. During precipitation, δ^{13} C value is frozen and when measured as δ^{13} TDC, it reflects the contribution

of particular carbonate species to the TDC, i.e. $CO_2(aq)$ and HCO_3^- . However, the presence of $CO_2(aq)$ is not fully appreciated. For example, Shotterer *et al.* (1989) suggested that $CO_2(g)$ is not in equilibrium with dissolved bicarbonate in CO₂rich waters in the Engadine Valley, Switzerland. Though their measured δ^{13} C values of carbonate precipitates concern total dissolved carbonate, they interpreted the results as it if $\delta^{13}C$ were of HCO₃. Based on the chemical analyses reported by Wexteen et al. (1988), HCO₃ contributes to the TDC in the CO₂-rich springs of the Engadine Valley by less than 50%: 45% in Lucius, 36% in Sfondraz, 42% in Bonifacius, 42% Emerita, the other contributing species being $CO_2(aq)$. As a result δ^{13} C of bicarbonate itself (i.e. TDC less $CO_2(aq)$) must be about 5 per mille instead of reported values around zero per mille. With a gas δ^{13} C average value of about -5 per mille (Shotterer et al., 1989) the system is close to isotopic equilibrium if the fractionation factor of Mook et al. (1974) of about 1.010 between bicarbonate and CO₂ gas is considered at the reported temperatures. Therefore, the conclusion about isotopic disequilibrium between CO₂(aq) and dissolved carbonate species could not apply to the springs of the Engadine Valley.

Though δ^{13} CO₂(g) values are measured in the hope that these are samples of deep $CO_2(g)$, due to fractionation processes, isotopic composition of the exsolved CO₂ should be different to that of the source region. In view of the above, it is surprising that $\delta^{13}CO_2(g)$ values are similar to those expected for $\delta^{13}CO_2(g)$ of deep CO₂. This is partly because fractionation during outgassing is not large and accumulated and/or isolated CO₂ have similar δ^{13} C values. If gas-solution isotopic equilibrium is verified, by additional data on water/gas ratios it is theoretically possible to evaluate $\delta^{13}C$ of the carbon source. With the equations for total carbon mass and isotopic balances: $TC = CO_2(g) + TDC$ and $\delta^{13}TC = X_{CO_2}(g)\delta^{13}CO_2(g) + X_{TDC}\delta^{13}TDC$ we have two unknowns in two equations, i.e. TC and $\delta^{13}TC$. X designates contribution of particular species to the TDC.

Matthews *et al.* (1987) incorrectly assumed that the total carbon inventory consisted of free CO_2

gas and dissolved HCO_3^- (pp.124). They used δ^{13} TDC as if it were δ^{13} HCO₃. If the presence of $CO_2(aq)$ is considered, then for the Chassol borehole (the Massif Central of France) with δ^{13} TDC claimed to be ¹³ HCO₃⁻ = 1.12, δ^{13} CO₂(g) = -5 per mille and the molar HCO₃/CO₂(g) equal to 0.4 as given, the value of true δ^{13} HCO₃ would be higher. Consequently, δ^{13} of the total carbon inventory would also be higher. Similarly, using the data of Griesshaber et al. (1992) and the fractionation factor of Mook et al. (1974), I calculated the results for CO2-rich water in Lahnstein in the Rhenish Massif. True δ^{13} HCO₃ is about +2.5 per mille instead of -0.98 claimed to be the measured δ^{13} HCO₃. Therefore the total carbon inventory is -2.5 per mille instead of -3.23 per mille.

Another not appreciated problem though addressed earlier (Pearson *et al.*, 1979; Lesniak, 1985), is that during ascent and outgassing δ^{13} TDC depends on P_{CO_2} , therefore, the reported δ^{13} TDC is interpretable only if P_{CO_2} is reported. Thus, some reference pressure and temperature should be given in addition to δ^{13} TDC measurements.

Summary

It was found frequently that in CO₂-rich waters
measurements of
$$\delta^{13}$$
TDC are inconsistent with
carbonate chemistry and δ^{13} TDC is mistakenly

considered as δ^{13} HCO₃. Because δ^{13} TDC values are P_{CO_2} dependent, it is proposed that all δ^{13} TDC measurements in CO₂-rich waters below boiling point are to be made with reference to f. example 0.1MPa of P_{CO_2} and 25 degrees centigrade. P_{CO_2} may be calculated from pH and alkalinity measurements or measured directly. δ^{13} TDC at the reference pressure may be recalculated using Raleigh equations in the form presented by Wigley *et al.* (1978).

References

- Griesshaber, E., O'Nions, R.K., and Oxburgh, E.R. (1992) Chem. Geol., 99, 213-35.
- Lesniak, P.M. (1985) Chem. Geol., 49, 275-86.
- Matthews, A., Fouillac C., Hill, R., O'Nions, R.K., and Oxburgh, E.R. (1987) *Earth Planet. Sci. Lett.*, 85, 117-28.
- Moook, W.G., Bommerson, J.C., and Staverman, W.H. (1974) Earth Planet. Sci. Lett., 22, 169-76.
- Pearson, F.J.Jr., Fisher, D.W., and Plummer, L.N. (1979) Geochim. Cosmochim. Acta, 43, 1799-807.
- Schotterer, U., Siegenthaler, U., Oeschger, H., Riesen, T., Muller, I., and Kelts, K. (1989) Proc. Int. Symp. Isot. Tech. Water. Res. Develop., IAEA, Vienna, pp. 277-86.
- Wexsteen, P., Jaffe, F.C., and Mazor, E. (1988) J. *Hydrology*, 104, 77-92.
- Wigley, T.M.L., Plummer, L.N., and Pearson, F.J.Jr. (1978) Geochim. Cosmochim. Acta, 42, 1117-39.