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Introduction 

The characterization of the chemical bonds in 
minerals and particularly in silicates is a puzzling 
problem which is related to the criteria used to 
classify them. As discussed by Tossell and 
Vaughan (1992), the availability of  an absolute 
description of  covalency versus ionicity in terms of 
observable properties is questionable. From the 
experimental point of view, the relevant informa- 
tion is provided by the analysis of  the electron 
density. However, different schemes can be 
applied to partition the crystal into atomic 
domains which yield slightly different atomic 
charges. Moreover, the nature of chemical bond 
is not only a matter of  electron distribution, but 
above all, of  distribution of  electron pairs. 
Theoretically most analyses of the bonding rely 
either on the valence bond (VB) or molecular 
orbital (MO) schemes, in which the VB and MO 
functions are themselves expressed in terms of 
atomic basis functions. Therefore, the guidelines 
used to characterize the bonding depend upon the 
level of  approximation, they cannot be applied 
with exact wavefunctions. 

The characterization of  chemical bond is 
qualitative, not quantitative. The topological 
analysis of  the gradient field of  local functions is 
the mathematically founded approach to go from 
quantitative to qualitative. This method has been 
pioneered by Bader (1990) who emphasized the role 
ofthe electron density. It allows to define bond 
paths and atomic basins and therefore rationalizes 
the concept of bonded atoms, provides an objective 
partitioning scheme and gives a theoretical 
foundation to structural chemistry. However, as 
already mentionned, with the electron density alone 
it is not easy to reveal the formation of electron 
pairs which are the consequences of  the Pauli 
exclusion principle. In this communication, we 
apply such a topological analysis to the gradient 
field of local functions, named hereafter localiza- 
tion functions, which measure the Pauli repulsion. 
This enables us to propose a new set of  criteria to 
classify chemical bonds which are applied to silica 
and related materials. 

A sketch of the topological theory of chemical 
bonds. 

The electron localization function, ELF, has been 
recently introduced by Becke and Edgecombe 
(1990) in order to provide local information on 
the curvature of the Fermi hole. Formally, it is 
written as: 

1 
ELF(r)  =.  

1 -t- •D;(r),] 

in which D~ and D~ represent the curvature of the 
electron pair density for electron of identical spins 
(the Fermi hole) for respectively the actual system 
and a homogenous electron gas with the same 
density. An alternative interpretation has been 
proposed by Savin and coworkers (1992) who 
considered the excess local kinetic energy due to the 
Pauli repulsion. The local kinetic energy K(r) is: 

g ( r )  = f ko*7~dT ' 

In which ~ is the wave function of the system, 7 ~ 
the kinetic energy operator and the prime indicates 
that the integrationis performed over the space and 
spin coordinates of  all particles but one. The 
ground state kinetic energy of a non interacting 
system of bosons with identical density is given by: 

1 IVp(r)l z 
KB(r) = 8 p(r) 

in which p(r) denotes the electron density, is a 
lower bound toK(r). The excess local kinetic 
energy is simply the difference of  these two 
quantities: 

D~(r) = g (r )  - gB(r) 

Though D~(r) provides the useful information, the 
actual analytical form of the ELF function allows 
to build a comprehensive scale. ELF is therefore a 
measure of the bosonic behaviour of  the electro- 
ndensity. In the regions of space where are located 
anti parallel spin electron pairs or single electrons 
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ELF is dose to 1 because D~ tends to zero, whereas 
ELF tending to zero indicates a strong Pauli 
repulsion due to parallel spin electrons. Of course, 
ELF is not the unique choice for an electron 
localization function, nevertheless it fulfills the 
requirements of  being scalar, defined for any 
point of the direct space and its definition does 
not rely upon the approximation used to calculate 
the actual wavefunctions. 

For  this kind of functions, the gradient X 
defines a vector field. The theory of gradient 
vector fields has been developed as a part of  the 
Dynamical System theory (see Abraham and Shaw 
(1992) for a comprehensive introduction). It is 
possible to build trajectories (the field lines) by 
introducing a fictuous time coordinate. The points 
c o r r e s p o n d i n g  to t ~ - c ~  and t ~ c ~  are  
respectively thea(p) and w(p) limits of  the 
trajectories.The set of  w-limits is the set of  the 
attractors of the dynamical system.The basin of an 
at tractor is the set of  points for which this 
a t t r ac to r  is the w-limit. F o r  grad ien t - type  
dynamical  systems, the property to have 0- 
dimensional  a t t ractors  is generic [Palis and 
Smale, 1970]. Nevertheless, for the examples that 
need to be investigated in chemistry, the system 
could belong to a continuous symmetry group 
(e.g. Coo~, SO(3)) which in turn implies that the 
attractor could be no longer 0-dimensional. In the 
mos t  general  case, wi thout  symmetry,  the 
attractors are point attractors and the Pauli 
pr inciple  implies  that  the electron densi ty  
integrated over one basin q(A) is bounded by 2. 
An attractor for which q(A) is less than 2 will be 
called hereafter an unsaturated attractor. The 
formation of  a molecule or a crystal from atoms 
breaks the SO(3) symmetry and therefore leads to 
the competition between the attractors which are 
reorganized accordingly. From a chemical point of 
view there are three types of  attractors: core, 
bonding (located between the core attractors of 
different atoms) and non-bonding. Following 
Bader [Bader, 1990], there are basically two 
kinds of  bonding interactions which are the 
shared-electron interaction and the closed-sheU 
interaction. Covalent, dative,and metallic bonds 
are subclasses of the shared-electron interaction 
whereas ionic, hydrogen, electrostatic and van der 
Waals bonds belong to the other class. For  
electron-shared interaction there is always at 
least one bond attractorbetween the core attrac- 
tors of  the atoms involved in the bond. 

Results and discussion 

The method previouly described has been applied 
to silica polymorphs, namely quartz, cristobalite 

and stishovite and to the modif icat ions of  
Mg2SiO4 in order to have a picture of the Si-O 
bonds. The approximate wave functions have been 
calculated with the periodic Hartree-Fock soft- 
ware CRYSTAL92 [Dovesi et al., 1992], a detailed 
descript ion of  these calculations have been 
previously published elsewhere [Silvi et al., 1990, 
1992, 1993]. For  every cases, bonding attractors lie 
on the bond paths between the silicon and oxygen 
nuclei giving support to a description of  the 
bonding in terms of shared-electron interaction. 
The averaged distance between the oxygen centre 
and bonding attractors and nonbonding attractors 
are respectively 0.75 and 0.55A. The main 
difference between, bexacoordinated and tetra- 
coordinated silicons is that there are five attractors 
around the oxygen instead of four in the latter 
case. Therefore,  in s t ishovite  the bonding  
attractors are less saturated than in the other 
polymorphs which explains why the bonds are 
larger. 

Most discussion of the covalency of the SiO 
bond are made in terms of hybridization of the 
silicon atom. The localization of attractors, on the 
contrary, indicates that most of the covalent 
character comes from the oxygen side. This 
picture is consistent with basis set effects which 
indicates that d-polarization functions on oxygen 
are necessary. Unpolarized split valence basis set 
predict the/3-phase of quartz and cristobalite to be 
stable, d functions on oxygen have been shown to 
correct this artefact. The polarization of  the 
oxygen atoms has been recently emphasized by 
Lacks and Gordon (1993). The criterium we use to 
classify interactions is independent of  the density 
distribution and characterizing the SiO bond as a 
shared electron interaction does not mean that the 
atomic charges calculated within Bader's partition 
are small. 
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