
Image analysis of petrographic textures and 
fabrics using semivariance 

ANDREW R. H. SWAN AND JANE A. GARRATY 

School of Geological Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE, UK 

Abstract 

Many subjective descriptive terms such as 'smooth', 'coarse' and 'anisotropic' are routinely used to convey 
properties of textures and fabrics, but these aspects of geological objects are not easily quantifiable. The use of 
directional semivariograms of image greylevels is assessed for this purpose. These quantify anisotropy of 
'coarseness/fineness' by using semivariogram ranges, and 'roughness/smoothness' by using semivariogram 
sill values. These can be summarized by ellipses derived from semivariogram ranges and directions. The 
method will find applications in analysis of rock thin sections as well as analysis of surface texture of grains 
and microfossils. 
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General properties of an image 

IMAQES of geological materials may be digitized as 
arrays of pixel values that contain nearly all of the 
information available to the human eye. If the image 
is of a thin section in transmitted light, the pixel 
values will be determined by the opacity of the 
material. If the image is of the surface of a grain or 
microfossil in reflected light, the pixels will have 
high values (light) or low values (dark) largely 
according to the positions of shadows which relate to 
surface topography. In either case, the spatial 
distribution of pixel values is likely to contain 
much information of geological interest. 

This paper is not concerned with the very specific, 
localized features of interest (for example, properties 
of specific mineral grains) but with the general 
properties of an image. These include attributes that 
are visually apparent, traditionally used and of 
considerable importance in geology. Using simple 
terminology, these attributes are: 1. coarse vs. fine; 2. 
rough vs. smooth; and 3. isotropic vs. anisotropic. 

The expression of these properties on a pixel array 
and their interpretations can be considered sepa- 
rately: 

1. Coarse vs. fine. In terms of pixel values on a 
scale from black to white (greylevels), a description 
of an image texture as 'coarse' means that similar 
greylevel values tend to recur laterally on the image 
only at relatively large distances. In the frequency 
domain, variance tends to be at low frequencies 
(though no regularity is implied). The description of 
'coarse' is natural and intuitive where this situation 
occurs in an image of a surface, perhaps of a fossil 
with widely spaced ribbing. In the case of thin 
sections, the term 'coarse' may also be used to 
describe relatively large grain sizes that may cause 
the low frequency variation of pixel values. The 
opposite term 'fine' can be used to describe high- 
frequency textures. 

Note that nothing is implied by these terms about 
the amplitude of the variation, i.e. whether the 
greylevels vary from black to white or just pale 
mid-grey to dark mid-grey. 

2. Rough vs. smooth. Where the term 'smooth' is 
used to describe a surface, we understand that it has 
little topography: on an image, this means that there 
would be little shadowing and the greylevel values 
would show low variability. In a thin section, the 
analogous situation is one of homogeneity. A 'rough' 
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texture has high variability or amplitude of grey- 
levels. Note that a perfectly smooth image cannot be 
assessed for the 'coarse vs. fine' property. 

3. lsotropic vs. anisotropic. The most visually 
striking property of an image is often its fabric: there 
may be stripes of contrasting greylevel or a 
systematic orientation of elongate grains. This 
property can be conceptual ized  in terms of  
anisotropy of coarseness and/or roughness. As 
described above, coarseness and roughness can be 
assessed in any one profile across the image. If 
profiles in all directions give the same properties, 
then the image is isotropic. It is common, however, 
for different directions to yield different amounts of 
coarseness; scans of a thin section perpendicular to 
bedding or parallel to the direction of maximum 
strain will  tend to encounter  more frequent 
fluctuations in greylevel than scans parallel to 
bedding or perpendicular to the strain direction. 
Anisotropy in roughness is also possible and 
indicates that there are distinct stripes of internally 
smooth textures. This results from banding rather 
than from grain shape. 

History of research 

Research in this field builds on contributions from 
workers in general image processing and from 
geologists seeking techniques for specific applica- 
tions. Techniques developed as general image 
processing applications are exemplified by the 
influential paper by Haralick et al. (1973), whose 
approach is similar in some ways to the method to be 
developed here. In Haralick's method, a variety of 
greylevel statistics are used to characterise textural 
features; these are derived from M8 greylevel co- 
occurrence matrices, based on matches between 
pixels separated by distance ft. However, this incurs 
loss of the information on non-exact greylevel 
similarities, requires considerable processing and 
yields a rather indirect  measure of  textural 
coarseness at any given separation 8. Weszka et al. 
(1976) reassessed these and other descriptors and 
found that greylevel statistics performed better than 
Fourier transforms. Davis et al. (1979) developed the 
use of co-occurrence matrices further and incorpo- 
rated ideas of coarseness and anisotropy in a similar 
way to that used here. All of these papers are directed 
towards characterizing textures for classification; 
there is no attempt to derive a small number of 
efficient, concise descriptors. 

A further development in textural analysis focuses 
on the recognition, characterization and relative 
positions of textural elements. This is exemplified 
by Tomita et al. (1982), whose technique is close to 
Fry's (1979, see below) method in concept and 
application. 

A different approach involving fractal analysis was 
used by Peleg et al. (1984) in analysing images of a 
variety of natural textures. Although a fractal 
dimension is calculable for any image, it is not an 
efficient descriptor unless the image has genuine 
fractal properties. An image, for example, of a thin 
section of sandstone or granite is more likely to be 
dominated by characteristic grain sizes: these will not 
induce the properties of scale-invariance for which 
fractal dimensions are concise descriptors. 

Initial work on analysis of anisotropy in rock thin 
sections was dominated by attempts at deriving strain 
ellipses on the basis of grain shapes. These methods 
were summarized by Ramsay and Huber (1983) and 
include Rf/qb methods (Lisle, 1985) and the Fry 
methods (Fry, 1979; Hanna and Fry, 1979; Erslev, 
1988). These approaches are very specific to cases 
where grains are well defined, grain centres can be 
found and the objective is restricted to obtaining an 
estimate of strain. Early work on soils by Smart 
(1966) and recently developed by Bai et al. (1994), 
assessed anisotropy of grain optical orientation using 
indices based on the frequency of grains in each of 
four directional classes, as obtained by using various 
orientations of polarizers. Such indices have 
specialized uses but have an uncertain relationship 
with general rock properties. 

Recently, there has been a phase of interest in the 
analysis of anisotropy of soil and rock images using 
Fourier and autocorrelation transforms. Derbyshire et 
al. (1992) used the standard 2D Fourier transform 
applied to SEM images of loess. The ellipticity and 
oblateness of the anisotropy were derived from 
contours on the 2D energy spectrum. Similarly, 
ellipticity of contours of the 2D autocorrelation 
function was used by Pfleiderer et al. (1993) to 
quantify anisotropy of petrographic images (for 
application see Pfleiderer and Halls, 1993). These 
methods are directed at the same properties of 
anisotropy of coarseness as are investigated in this 
paper, and, indeed, the autocorrelation approach is 
closely related mathematically to the semivariance 
method to be developed here. However, these Fourier 
and autocorrelation methods involve uncertainties as 
to which contour should be used to represent the 
anisotropy, and neither seeks to separate anisotropy of 
coarseness from anisotropy of roughness ('stripiness'). 

Semivariance 

In order to quantify the conceptual descriptors of 
image texture and fabric described above, a method 
is needed that can be applied to individual profiles, 
which can give estimates of variability (roughness) 
and which is capable of comparing greylevels at 
pixels with specified spatial separation (for coarse- 
ness). These criteria are met by the procedure of 
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calculating semivariance: this forms the basis of the 
technique to be described here. 

Semivariance is defined by the standard equation: 

1 n-h 

"Yh -- 2(n -- h) ~ (xl - Xi+h) 2 (1) 

where: 
Yh is the semivariance for lag distance h; 
xi is the value (in this study, the greylevel) of the 

ita data item (pixel) in a profile; 
n is the number of data items in the profile. 
The semivariance is calculated for all possible 

integer values of the lag distance h. The equation is 
based on the sum of the squared differences between 
the values of all pairs of points that are a distance h 
apart. The result is shown as a graph of Yh against h 
known as a semivariogram (Fig. 1). The semivar- 
lance for h = 0 must be 0, but the graph typically 
climbs steadily to higher Yh with higher h, indicating 
that points further apart tend to be more dissimilar. 
Eventually, a value of h is normally reached at which 
the graph levels out: this value of h is known as the 
range and the value of Yh at this plateau is known as 
the sill value. For any distance h outside the range 
(i.e. at which the sill value of 7h applies), the 
semivariance is not affected by the effect of 
similarity due to closeness; it is only the result of 
the overall variability of the data. In fact, it can be 
shown that the sill value of Yh is equal to the variance 
s 2 of the sample of n data values. 

Data sequences with rapid, high frequency 
fluctuations have short semivariogram ranges, as 
pairs of points even a short distance apart will be 
unrelated. If data have fluctuations tending to be at 
longer wavelengths, the semivariogram range will be 
larger: we would find Yh remaining less than s 2 at 
relatively larger values of h. 

semivoriogran, 
sHI 

vadGnce 

0 . . . .  

o ~ - ~ 

__  ~ distance (h) 
range 

FIG. 1. A typical semivariogram, showing how the 
semivariance Yh varies with distance h, and the standard 
terminology of sill and range. The 'plateau' value of Yh 
is the sill value and normally approximates to the 

variance. 

Semivariance was devised in response to problems 
of estimation of grade of gold ore in South African 
mines, and is a key element of geostatistics ( s e n s u  

Matheron, 1963). The discipline of geostatistics was 
developed in response to the realisation that gold ore 
grade (and many other geological properties) is not 
distributed randomly in space, but neither is it 
describable by a geometric function. Attributes 
having this property are called regionalized vari- 
ables, and it is contended here that greylevel values 
on an image of a rock thin section can very often be 
regarded as such. The semivariogram is an optimal 
descriptor of the properties of a regionalized variable 
and should be the preferred method of analysis in 
such cases. Regionalized variables often contain a 
component of drift: this is the geostatistical term for a 
significant linear or polynomial trend. Drift prevents 
the semivariogram from reaching a level sill value: a 
linear drift, for example, will cause a continuous 
increase in Yh with h. This complicates analysis, and 
drift is normally removed prior to calculation of 
semivariance. 

In gold grade estimation, the semivariogram is 
used to characterise the nature of spatial variation of 
grade so as to produce estimates at unknown points. 
In the present context, the semivariogram is to be 
used in an analogous way for characterization of 
greylevel variation, but estimation is not a require- 
ment. It is common practice in geostatistics to assess 
the anisotropy of semivariance; see, for example, 
Bardossy and Bardossy (1984). Semivariograms 
calculated for various directions are used to 
calculate an ellipse which describes the range in 
two dimensions. 

Application to rock thin sections 

The semivariogram can be used to quantify all of the 
properties of textures and fabrics that were described 
in concept in the first section of this paper: coarse vs .  

fine: quantified by the semivariogram range; and 
rough vs. smooth: quantified by the sill semivariance 
(= variance). 

Anisotropy is definable from directional semivar- 
iograms. It may be reducable to an ellipse, which 
allows quantification as: 1) length (representing 
range or variance) of long axis; 2) axial ratio; 3) 
direction of long axis. 

In detail, the procedure is as follows: 
1. Select the desired block of pixels from the image. 

This should be square (to allow equal opportunity of 
detection of variability in each direction), but can be 
of any size, depending on the scale of the texture being 
investigated and the permissable processing time. We 
will use m to denote the number of pixels along a side 
of the square array. 



192 A . R . H .  SWAN AND J. A. GARRATT 

2. Some pre-processing may be required: an image 
containing large-scale heterogeneities, perhaps the 
boundary between two lithologies, may have a drift 
or trend in greylevel values. This should be removed 
in advance by using residuals from 1st or 2nd order 
trend surfaces (see Davis, 1986). In practice, this is 
not often necessary. 

3. Calculate the semivariogram for each of  four 
directions: vertical, horizontal and the two 45 ~ 
diagonals. If we have an n x n array of square 
pixels, with greylevel values given by xij (where i is 
the horizontal coordinate andj  the vertical coordinate 
relative to a top left origin), the modifications to the 
basic semivariance equation (1) are as follows: 

Left-right direction: 

1 n n-h 

Top-bottom direction: 

1 n n-h 

"Yh --  2 n ( n  -- h) E E (xl,j - xi,j+h) 2 
~=1 5=1 

(3) 

Top left-bottom right direction: 

1 n - h  n--h 

7v~h = 2(n -- h) 2 E E (xi,5 - Xi+h,j+h) 2 
5=1 i=1 

(4) 

Bottom left-top right direction: 

n n - h  

1 2 E E - 2 
"rv~h = 2(n - h) 5=h i=1 

(5) 

The unit of the lag distance h is the pixel, but note 
that for the diagonal directions (equations 4 and 5), 
the semivariance calculated using a given value of h 
is actually the semivariance for distance v'~h, as we 
compare pixels offset by h units in the horizontal and 
vertical directions. 

Modifications of these equations could readily be 
devised for intermediate directions, if  more detail or 
rigour is required. 

4. Calculate, for each of the four directional 
semivariograms, the sill value. Although, in the case 
of a single profile of a regionalized variable, the sill 
value equals the variance, the overall greylevel 
variance of the whole array of pixels can not be 
used as a sill value in the general case. Stripes of 
contrasting greylevel cause anisotropy of variance; 
so, for example, perfectly horizontal black and white 
stripes would give zero variance in the horizontal 
directional analysis, but vertical scans would yield a 

variance equal to the total variance. If there is no 
spatial 'stripiness', the overall variance can be 
calculated and used as the sill value. Pervasive 
anisotropy (e.g. due to pure shear) should not affect 
variance isotropy. 

If there is any degree of 'stripiness', the sill value 
will be different in different directions and must be 
found separately for each direction, These directional 
variances can be found during the semivariance 
calculation as follows: 

Left-right direction: 

1 n - ]  n n - h  

s2 n2(n  - 1 (xi,j  Xi+h,j) 2 (6) 

Top-bottom direction: 

1 n - 1  n n - h  

h=l  i=1 j= l  

Top left-bottom right direction: 

"1 n - 1  n - h  n - h  

Z.-~k=l h=l  j = l  i=1 

Bottom left-top right direction: 

"1 n - 1  n n - h  

8 2 -  n _ l - - - - - - - ~ E E E ( X i , j - - X i + h , j - h )  2 (9)  
2 Y'~k=l h=l  j=h  i=1 

If the variance of greylevel is to be compared 
between images, it is essential that the thin sections 
and the optical conditions are prepared similarly. If 
this condition is not met, it can not be corrected by 
use of image pre-processing, for example by contrast 
standardization. This will guarantee similarity of 
image 'roughness' regardless of any real petro- 
graphic differences! However, variations in optical 
conditions will not normally affect var iance 
anisotropy and semivariance range. An exception is 
comparisons of images in plane- with crossed- 
polarized light, where differences in anisotropy will 
reflect any difference between grain orientation and 
crystallographic orientation. 

5. Find, from each of the four directional 
semivariograms, the effective range value (r). The 
range is normally the value of h at which the 
semivariance reaches the sill value (= directional 
variance),  but in pract ice the slope of  the 
semivariance curve often declines to near zero as 
the variance is approached and the point of  
intersection with the sill is poorly defined. It is 
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preferable to use a consistently lower value of 
semivariance, 7 ,  to find the effective range. W e  
have used the directional variance divided by a 
critical F value: 

7r = sZ/F~=o.os, . . . . .  (10) 

(The use of degrees of freedom va and vz = to is 
justified by the very large number of pixels normally 
involved and the slight change in critical F values 
with large v. F~=0.os; v=~,~ = 1.46.) 

Hence, the effective range r is the distance having 
semivariance 7r such that the F ratio S2/Tr is equal to 
the critical value of F: larger distances will tend to 
have 7h insignificantly different from s 2. The value of 
7r can be found by linear interpolation between the 
two lowest consecutive values of h that have 7h 
values that straddle 7r. 

6. Plot the directional variance and range values in 
polar coordinate form and find the directions and 
lengths of the major and minor axes of the best fit 
ellipse. This can be done by the least-squares method 
used by Erslev and Ge (1990), or by iterative 
optimisation. In some images, anisotropy may best 
be described by a non-elliptical geometry, for 

example an oblate shape may be expected where 
affected by well-defined layering or banding. More 
than the basic four directions are needed to 
distinguish elliptical from non-elliptical shapes. The 
FD index of Derbyshire et  al. (1992) could be used to 
quantify departures from ellipticity. 

Results 

We have used as an illustrative example a portion of 
the image presented by Hanna and Fry (1979): see 
Fig. 2. This has been chosen because the strain 
analysis results for this image are well documented, 
so the results of the current method are, to an extent, 
testable. However, in the following respects the 
image is far from ideal: 

1. The texture is very coarse: it is possible that 
spurious anisotropies will occur where the grains are 
truncated by the edges of the scanned pixel array, and 
the result may be sensitive to the positioning of these 
edges. 

2. There is no apparent anisotropy of variance in 
the image; as such, the methods of Derbyshire et  al. 
(1992) and Pfleiderer et  al. (1993) would be likely to 

FIG. 2. Scanned version of Figure 1 of Hanna and Fry (1979). The square box delimits the area analysed in this study: 
the sides have length of 200 pixels (about 1.2 mm in the original rock). The image is reproduced by laser printer with 

stippled representation of greylevels; this does not reflect the true detail of the analysed image. 
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FIG. 3. Directiona! semivariograms for the image shown 
in Fig. 2. The horizontal lines give the Yr values: these 
intersect the curve to give the range value used here. The 
horizontal scale for the diagonal semivariograms has 

units of v/2 pixels. 

obtain the same result with similar efficiency (but, 
arguably, less rigour). 

3. Analysis of visual anisotropy is likely to prove 
much more useful when the anisotropy is more 
cryptic: the anisotropy could hardly be more clear in 
this case! 

Furthermore, it should be remembered that 
anisotropy due to strain is not the only interpretation 
and application of analysis of visual anisotropy. 
Results of application to diverse geological contexts 
will be documented and discussed in a subsequent 
paper. 

Directional semivariograms for the image are 
shown in Figure 3. The distances (r) at which the 

semivariance curve crosses 'Yr (equation 10) are well 
defined. The directional variances and effective 
ranges have been used to define ellipses, shown in 
Fig. 4. 

The directional variance ellipse shows isotropy of 
'roughness'. If the image contained any degree of 
'stripy' heterogeneity, there would be clear aniso- 
tropy of directional variance, with the stripes 
orientated perpendicular to the long axis of the 
ellipse. The size of the ellipse (or, in this case, circle) 
indicates the degree of 'roughness' of the image 
(variability of greylevels), but this is not an important 
attribute in this example. 

The range ellipse shows a very pronounced 
anisotropy of 'coarseness': pixels disposed at angles 
of around 6.5 ~ from vertical tend to become 
dissimilar at shorter separations than in the 
perpendicular direction. It is clear that this is due to 
the shape of the ooids and the anisotropy of the ooid 
distribution. The ellipse compares well to the ooid 
orientation and shape, but the strain analysis results 
documented in Hanna and Fry (1979) give rather 
larger axial ratios (c. 2.4): this appears to be the result 
of sampling effects: Hanna and Fry base their 
analyses on more ooids than are shown in their Fig. 
1, and that figure is further sub-sampled in our 
analysis. The size of the range ellipse is directly 
related to 'coarseness', in this case induced by grain 
size. However, the precise relationship between 
semivariogram range and apparent average grain 
size has not yet been established. 

A p p l i c a t i o n s  

The new method has performed well in resolving the 
anisotropy of the chosen image, and has produced 
interesting, but less testable, results when applied to a 
wide range of other petrological images (as yet 
unpublished). Clearly, analysis of anisotropy due to 
tectonic strain is the obvious application. In the 
current method (as with those of Derbyshire et  al. ,  
1992 and of Pfleiderer et  al. ,  1993), it is not 
necessary to identify grain boundaries and grain 
centres, and consequently the method is quicker, 
more versatile and more rigorous than the Fry and 
Rf/qb methods. It is possible that rough assessments 
of strain may even be possible using images of 
suitable field exposures. However, a potential 
problem is the uncertain relationship between visual 
anisotropy and strain: images are likely to contain 
components of anisotropy due to other effects, for 
example sedimentary layering and metamorphism. It 
is hoped that these effects may be detectable and 
separable by analysis of the directional variance 
ellipse. The separation by the current methodology of 
pervasive anisotropy from layering or banding has 
great potential and is not attainable by other methods. 



a) Directional variance 

Long axis: 12,485 

Axial ratio: 1.009 

Direction of long axis: 177.96 ~ from vertical 
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b) Directional range 

Long axis: 15.46 

Axial ratio: 1.76 

Direction of long axis: 96 .56  ~ from vertical 
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FIe. 4. Best-fit ellipses superimposed on: (a) directional variances (units: greylevel2); (b) directional ranges (r) 
(units: pixels). The directional values are shown as crosses on the radiating axes in polar co-ordinate form. The 
directional variance ellipse shows almost no anisotropy of variance, indicating near isotropy of 'roughness'. The 
range ellipse shows strong anisotropy, indicating anisotropy of 'coarseness' due to pervasive strain. Compare with 

the image in figure 2. 

Similarly, analysis of visual anisotropy of 
sediments is likely to yield separable information 
on sedimentary layering and compaction. Both of 
these may be correlatable with anisotropy of 
permeability. In disaggregated sands, the method 
could be used to quantify grain surface textures (also 
applicable to microfossils). 

As a standard processing tool in an image analysis 
system, the method will be useful in characterising 
portions of images. In petrology, the quantification of 
relief and anisotropy due to cleavage could assist in 
the diagnosis of minerals. 
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