Abstract: The micro-inclusions located in the genetic centre of Yakutian diamond monocrystals have been studied using optical (anomalous birefringence, photoluminescence, cathodoluminescence) and microanalytical (electron-microprobe, proton-microprobe, scanning electron microscope) methods. Most diamonds nucleated heterogeneously on mineral seeds, that lowered the energy barrier to nucleation. Nucleation of peridotitic diamonds occurred on a matrix of graphite+iron+wüstite, in an environment dominated by forsteritic olivine and Fe-Ni sulfide. Nucleation of eclogitic diamonds occurred on a matrix of sulfide ± iron in an environment dominated by Fe-sulfide and omphacite (±K-Na-Al-Si-melt). The mineral assemblages recorded in the central inclusions of Yakutian diamonds indicate that they grew in a reduced environment, with oxygen fugacity controlled by the iron-wüstite equilibrium. Nucleation of diamond occurred in the presence of a fluid, possibly a volatile-rich silicate melt, highly enriched in LIL (K, Ba, Rb, Sr) and HFSE (Nb, Ti, Zr) elements. This fluid also carried immiscible Fe-Ni-sulfide melts, and possibly a carbonatitic component; the introduction of this fluid into a reduced refractory environment may have been accompanied by a thermal pulse, and may have created the conditions necessary for the nucleation and growth of diamond.
Mineralogical Magazine; June 1998 v. 62; no. 3; p. 409-419; DOI: 10.1180/002646198547675
© 1998, The Mineralogical Society
Mineralogical Society (www.minersoc.org)