Precise two chronometer dating of pleistocene travertine: the $^{230}\text{Th}/^{234}\text{U}$ and $^{226}\text{Ra}_{\text{ex}}/^{234}\text{U}$ approach

J. Eikenberg
G. Vezzu
G. Wyssling

Paul Scherrer Institute, 5232 Villigen (PSI), Switzerland
Buero Wyssling AG, 8803 Pfaffhausen (ZH), Switzerland

Until recently it was not possible to develop a generally accepted model of the geological setting and evolution of the most impressive Swiss limestone caves near Lucerne. Nevertheless, the underlying sedimentary strata suggests that the impressive caves formed in the cause of the global warming following the last glacial period (i.e. less than 10^4 y before present). Fresh precipitates indicate furthermore, that the formation of travertine is still active on this locality. Previous attempts using the most suitable dating methods (^{14}C radiocarbon method, pollen analyses) for such a young setting failed, because the carbon isotope composition in the extremely small fractions of fossil organic residues is strongly disturbed by carbon of inorganic origin from precipitating calcite. However, for geological systems which have been developed less than 3×10^5 y ago, radionuclides from the U and Th decay series may be used as chronometers, provided that fractionation processes such as different solubilities cause activity disequilibria between the different members (^{238}U, ^{234}U, ^{232}Th, ^{226}Ra etc.) in the waters from where the precipitates are formed (e.g. Attendorn and Bowen, 1997).

Analytical techniques

After complete sample dissolution in HNO$_3$ and addition of the chemical yield calibration spikes (^{232}U, ^{228}Th, ^{209}Po) the following nuclides were analysed mainly using α-spectrometry: ^{238}U, ^{234}U, ^{232}Th, ^{230}Th and ^{226}Ra (the latter via its short lived progenies ^{222}Rn and ^{210}Po). U and Th were separated chromatographically and the sample discs were prepared using electrolytic deposition in HNaSO$_4$-medium. ^{226}Ra was determined indirectly by spontaneous deposition of ^{210}Po on silver discs and via emanation of ^{222}Rn into an organic cocktail which was counted using α-LSC. This was useful to select samples with ages below 100 years.

Results and discussion

Reducing the complex ^{238}U decay series into geologically relevant subsystems (i.e. older than a few years) the following precursor-progeny relations hold

$$^{234}\text{U} \rightarrow ^{230}\text{Th} \rightarrow ^{226}\text{Ra} \rightarrow ^{210}\text{Pb} \rightarrow ^{210}\text{Po} \tag{1}$$

So far, two methods employing this decay chain have been applied successfully in the field of sedimentology. (i) $^{230}\text{Th}/^{234}\text{U}$ ingrowth dating for rock formations which evolved between (0.5–3) $\times 10^5$ y ago (e.g. Kaufmann, 1993) and (ii) ^{210}Pb excess decay dating (supplied from soil-emanated ^{222}Rn into the atmosphere), i.e. a method which is mainly applied to determine sedimentation rates in lakes for the last 100 years (e.g. Robbins, 1978). There are, however, additional mother-daughter couples that are potentially useful for dating geological young systems. Figure 1 shows the evolution of the activity ratios in the ^{238}U series for hypothetical cases with initial daughter/parent ratios of 2 (two times daughter excess) and 0 (i.e. zero inherited daughter activity at the time of sample formation). The figure implies that the different chronometers can be applied in both directions, (i) decay of daughter excess and (ii) daughter ingrowth.

![Figure 1](image-url)
Fig. 2. Comparison of the analytical data to the theoretical decay of 226Ra in a semi-log diagram with 226Ra$_{ex}/^{226}$Ra(0) as a function of time.

Of special focus is the couple 226Ra/230Th, because this system ($T_{1/2}$ of 226Ra = 1600 y) may be suitable for dating rocks with formation ages between ≈ 100 years and about 8×10^3 y, i.e. an interval which would exactly close the time gap between the established systems 238Th/234U and 210Pb$_{ex}/^{226}$Ra in a sedimentary environment. These two systems of geological relevance as well as the presented 226Ra$_{ex}/^{234}$U ingrowth and 226Ra$_{ex}/^{234}$U excess decay relationship for an ideal system which started under the following boundary conditions: no initial 238Th, i.e. 230Th(t=0) = 0, no significant change of the 234U activity with time, i.e. 234U(t) = 234U(0) and constant initial values of 226Ra(0) in all samples independent of time. Provided that these boundary conditions are valid the following analytical solutions are obtained:

$234U(t) = 234U(0) \times $e^{-\lambda_{234}t}$ \tag{2}
$230Th(t) = 234U(t) \times (1 $- e^{-\lambda_{230}t}$) \tag{3}
$226Ra(t) = 226Ra$_{ex}(0)\times e^{-\lambda_{226}t}$ \tag{4}

These relations show clearly that (i) the 230Th ingrowth is dependent only on the uranium activity and, therefore, the 230Th supported 226Ra ingrowth is also dependent only on the 234U activity. Since this coupled system is completely independent of 230Th, we will refer to this couple as the 226Ra$_{ex}/^{234}$U chronometer. Since the second term in equation (4) is nothing other than the U/Th supported 226Ra ingrowth (226Ra$_{sup}$), the amount of the residual excess 226Ra surviving the decay of initially incorporated Radium can be calculated as follows:

$226Ra$_{ex}(t) = ^{226}Ra_{m} - ^{226}Ra_{sup}(t), \tag{5}$$

where 226Ra$_{m}$ is the measured total activity of 226Ra. Normalizing this relationship to 226Ra(0) (taken from samples with 230Th/234U < 10^{-3} and with 226Ra/230Po < 1) the 226Ra$_{ex}/^{234}$U ages can be obtained in a similar manner to other dating systems based on decay of an excess component (such as 14C dating), or,

$$\frac{^{226}Ra_{ex} - ^{226}Ra_{sup}(t)}{^{226}Ra_{ex}(0)} = e^{-\lambda_{226}t}. \tag{6}$$

To calibrate the 226Ra$_{ex}/^{234}$U chronometer, the boundary conditions mentioned above must be valid (all proofs discussed in Eikenberg et al., 1998) and the sample ages have to be known from independent determinations. The sample ages were obtained using precise 230Th/234U isochrone dating (Eikenberg et al., 1998). The resulting data are shown in Fig. 2 as 226Ra$_{ex}(t)/^{226}$Ra(0) versus time on a semi-log plot. All those samples which started with identical 226Ra(0) to the most recently formed travertine should plot on the theoretical 226Ra$_{ex}/^{226}$Ra(0) decay curve. Indeed, most of the data plot on or are close to the curve and even samples which exhibit ages of 4 times the half live of 226Ra still fit well to the decay curve. From the youngest to the oldest samples the data cover, in summary, a range of more than one order of magnitude with respect to 226Ra$_{ex}(t)/^{226}$Ra(0).

Although the data argue strongly for a constant initial input of 226Ra into the precipitating material, there is a further proof to justify this conclusion. In particular, as the earth alkaline element Ba behaves chemically very similar to Ra, it is interesting to study the variation of Ba in the rocks samples. Since the concentration of Ca in the authigenic phase is constant (pure calcium carbonate) it is most suitable to use the Ba/Ca ratios as a measure on the variability of initial 226Ra. Analysis of six samples yielded highly constant values of (4.90 \pm 0.2) \times 10$^{-3}$ g/g, hence suggesting invariant 226Ra concentrations at any time of travertine formation at this locality.

References