Diffusion of C and O in calcite

T. C. Labotka
Department of Geological Sciences, University of Tennessee, Knoxville TN 37996-1410, USA

D. R. Cole
Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831-6110, USA

L. R. Riciputi
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton Alberta, Canada T6G 2E3

T. Chacko

Diffusion of C and O in calcite depends strongly on the presence of defects in the calcite and of H₂O in an accompanying fluid phase. Previous experimental studies of the diffusion of O at 700°C, for example, show that the diffusion coefficient D ranges over nearly three orders of magnitude from 10⁻¹³ to 10⁻¹⁶ as pH₂O ranges from 400 to 0.1 MPa. Values of D for C also depend on pH₂O, although the dependence isn’t as well determined as it is for O. We have attempted to isolate the extrinsic effects on C and O self diffusion in calcite by determining the diffusion coefficients from single crystals of annealed calcite that were heated in an atmosphere of isotopically labeled CO₂.

Experimental methods

Single crystals of calcite from Chihuahua, Mexico, were annealed in an atmosphere of NBS-20 CO₂ at 700°C for 24 h. For each experiment, two or three crystals were placed in either a platinum or a gold capsule. The capsule was evacuated, and 6–12 mg of ¹³C/¹⁸O were introduced into the capsule. Experiments were conducted at 100 MPa, 600–800°C, and 7–72 d. The crystals were extracted from the capsules and analysed with a Cameca 4f ion microprobe, during which isotopic ratios were monitored with depth in the crystal. Depth profiles were measured with a profilometer and were

![Graph](image)

Fig. 1. Ion microprobe depth profile for a calcite crystal heated to 700°C at 100 MPa for 14 d. The two data profiles represent simultaneous measurements of ¹³C, ¹²C, ¹⁸O, and ¹⁶O. The curves represent fits to \(C = C₀ \text{erfc} \left(\frac{x}{2\sqrt{D}t} \right) \). The shaded regions on each profile show the range in values fitted to the function. Least-squares values of D are indicated next to the profiles. The least-squares values of the apparent surface concentrations are indicated by the curves at \(x = 0 \).
Results

Figure 1 shows the results from one experiment conducted at 700°C, 14 d. The use of labelled CO₂ allows simultaneous measurement of the diffusion coefficients for C and O, although the great difference in the values of D for C and O results in concentration profiles that can be too deep for O or too shallow for C. The concentration profiles are characterized by an initial increase in the concentration of the heavy isotope through the gold coat on the sample, followed by a decrease with depth, mimicking an error-function profile. The shaded portions of the curves were fit to the function \(C = C_0 \text{erfc}(bx) \), in which \(C_0 \) is the apparent surface concentration and \(b = \frac{1}{2D} \). These parameters were fitted with the use of the Levenberg-Marquardt algorithm, which predicts values of \(C_0 \) and \(b \) with \(\chi^2 \approx 3 \times 10^{-3} \), corresponding to a Pearson’s \(r \approx 0.99 \). The error in \(D \) from the fitting procedure is < 5%, much less than that from the error in measuring the depth, < ±30%.

Preliminary results from experiments conducted at 600, 700, 750, and 800°C indicate an activation energy of ~205.4 and 148.7 kJ/mol and preexponential factors of ~5.1 × 10⁻⁵ and 8.3 × 10⁻¹⁰ cm²/s for O and C, respectively. These values are smaller than previously determined activation energies by Anderson (1969) and Kronenberg et al. (1984), although the O values are similar to those determined by Farver (1994). The values of \(D \) are smaller than previously measured values. Some of the differences may result from the preannealing, the pressure, and the simultaneous direct measurement of C and O. It is clear, though, that the absence of H₂O severely restricts the diffusivities of C and O in calcite.

References