High-Resolution Cathodoluminescence Combined with SHRIMP Ion Probe Measurements of Detrital Zircons

J. Götze1, U. Kempe1, D. Habermann2, L. Nasdala3, R. D. Neuser2 and D. K. Richter2
1 Freiberg University of Mining and Technology, Institute of Mineralogy, Brennhausgasse 14, D-09596 Freiberg, Germany
2 Ruhr-University Bochum, Institute of Geology, Universitätsstraße 150, D-44780 Bochum, Germany
3 Freiberg University of Mining and Technology, Institute of Theoretical Physics, B.-v.-Cotta Straße 4, D-09596 Freiberg, Germany

Abstract: Cathodoluminescence (CL) microscopy and spectroscopy combined with SHRIMP ion probe measurements were carried out on detrital zircons from the Cretaceous Weferlingen quartz sand (Germany) to distinguish and characterize different zircon populations.

Investigations by CL microscopy, SEM-CL and BSE imaging show that there are three main types of zircons (general grain sizes of 100–200 µm): (1) apparently weakly zoned, rounded grains with relict cores, (2) well rounded fragments of optically more or less homogeneous zircon grains showing CL zoning predominantly parallel to the z-axis, and (3) idiomorphic to slightly rounded zircon grains typically showing oscillatory euhedral CL zoning. A fourth type of low abundance is characterized by well-rounded grain fragments with an irregular internal structure showing bright yellow CL.

High-resolution CL spectroscopic analyses reveal that blue CL is mainly caused by an intrinsic emission band centered near 430 nm. Dy3+ is the dominant activator element in all zircons, whereas Sm3+, Tb3+, Nd3+ have minor importance. Yellow CL (emission band between 500 and 700 nm) is probably caused by electron defects localized on the [SiO4] groups (e.g. related to oxygen vacancies) or activation by Yb2+ generated by radiation. Variations of the integral SEM-CL intensity are mainly controlled by the intensity of the broad bands and the Dy3+ peaks.

SHRIMP analysis provides in situ high-resolution U-Pb dating of single zircon grains and confirms different ages for the evaluated different zircon types. The measurements show that the U-Pb ages of the zircons from Weferlingen scatter over a wide range (340 to 1750 Ma), backing up earlier conclusions that the quartz sand from Weferlingen is quite heterogeneous in terms of provenance.

Keywords: zircon • cathodoluminescence • SEM • SHRIMP • clastic sediment

Mineralogical Magazine; April 1999 v. 63; no. 2; p. 179-187; DOI: 10.1180/002646199548411
© 1999, The Mineralogical Society
Mineralogical Society (www.minersoc.org)