
Mineralogical Magazine, October 1999, Vol. 63(5), pp. 723733 

Bi-Sb energetics in sulfosalts and sulfides 
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Experimental brackets (300-450~ on Sb-Bi partitioning between stibnite-bismuthinites (Sb,Bi)2S3 
and sulfosalts in the AgSbS2-AgBiS2 binary subsystem (cz-Ag(Sb,Bi)S2, [3-Ags(Sb,Bi)~(Sb,Bi)nSlo) anti 
extant constraints are used to define mixing properties and standard state Gibbs energies of Sb-Bi 
exchange reactions. They are also used to construct a phase diagram for Ag(Sb,Bi)S2 sulfosalts. We 
infer that the non-ideality associated with Sb-Bi mixing is largest in minerals of the 
[3-Ags(Sb,Bi)~(Sb,Bi)nSlo series, and is sufficient to produce miscibility gaps between an ordered 
intermediate species Ags(Sb)~(Bi)nszo and Sb- and Bi-end-members at T < 240~ (measured in terms 

lWlf~ urnI~ - 8.5 kJ/gfw). The nonddeality of symmetric regular-solution-type parameters ~ Bi-Sb = vvBz-Sb 
associated with the Sb-Bi substitution in stibnite-bismuthinite and (z-Ag(Sb,Bi)Sa is ~ 70% that in the 

g w B S  B i - S b  ~ 6.0 kJ/gfw). It is insufficient to Ags(Sb,Bi)14(Sb,Bi)IZs10 series t ai-Sb ~ 12.0 kJ/gfw; W ~ 
produce exsolution at temperatures of ore deposition (T > T~ ~ 88~ but most likely is responsible 
for a preponderance in molar Sb/Bi ratios towards end-member compositions. Finally, positive Gibbs 
energies of the Sb-Bi exchange reactions 

= A B1S2 + =Sb2S3 (AGBi Sb ~ 2.70 kJ/gfw) 1Bi2S3 + AgSbS2 g " 21 -BS-~_ 
1 " 1 1 �9 __ 1 - 0 BS-[~ and ~Bz2S? + gAgsSbsSto gAgsB15Slo ~Sb2S3 ( A G B i - S b  ~ 4.89 kJ/gfw) 

indicate that Bi is more compatible in stibnite-bismuthinite sulfides than in Ag(Sb,Bi)S2 sulfosalts. 

KEYWORDS: bismuthinite-stibnites, Ag(Sb,Bi)S2 sulfosalts, Sb-Bi energetics, ordering and exchange reactions. 

Introduction 

ANTIMONY- and Bi-rich sulfides and sulfosalts with 
compositions approximating those in the AgzS- 
Sb2S3 Bi2S3 system (stibnite-bismnthinites, 
(Sb,Bi)2S3; miargyrite, Ag(Sb,Bi)S2, X~i ~ 0.0; 
aramayoite, Ag(Sb,Bi)S> 0.17 ~< XBi ~< 0.35; 
matildite, Ag(Bi,Sb)S2, XBi ~ 1.0) are common 
constituents in polymetallic hydrothermal sulfide 
ore deposits of epithermal-mesothermal vein type 
(e.g. Bartos, 1990; Boldyreva, 1970; Borodayev et 
al., 1986; Brooker and Jaireth, 1995; Bussell et al., 
1990; Ruvalcaba-Ruiz and Thompson, 1988; 
Czamanske and Hall, 1975; Gibson et al., 1990; 
Gilmer et al., 1988; Goodell, 1974; Goodell and 
Petersen, 1974; Grrpper et al., 1991; Hayase, 
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1955; Jeppson, 1987; Johnson and Meinert, 1994; 
Kelly and Tumeaure, 1970; Luetb, 1988; Lueth et 
al., 1990; Petersen et al., 1977; Petruk, 1968; 
Sillitoe et al., 1975; Springer, 1969; Stone, 1959; 
Turneaure, 1971). Among these minerals, 
bismuthinite-stibnites exhibit distinct composi- 
tional variations along flow paths of mineralizing 
fluids in ore deposits that are characterized by 
preponderances of molar Bi/(Bi+Sb) ratios near the 
end-members, with a conspicuous paucity of 
intermediate compositions (Fig. 1). Such a 
pattern of molar semi-metal ratios is suggestive 
of significant non-ideality of Sb-Bi mixing in 
bismuthinite-stibnites (e.g. Ghosal and Sack, 
1995). Previous workers (e.g. Lueth et al., 1990) 
have attributed such variations in molar Bil(Bi+Sb) 
ratios to a process referred to as 'semi-metal 
boiling', whereby preferential volatilization of 
antimony from the ore fluid at a point along the 
flow path is held responsible for the sudden change 
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FIG. 1. Histogram of number of analyses (# Analyses) vs 
molar Bi/(Bi + Sb) ratios (X~Bi s) of bismuthinite-stibnites 
taken from compilations of Springer (I969) and Lueth 

(1988). 

in bismuthinite-stibnite Bi/Sb ratios. However, a 
similar pattern of semi-metal abundance ratios is 
observed in the argentian sulfosalt pyrargyrite- 
proustite (Ag3(As,Sb)S3), and is due to non-ideality 
of As-Sb mixing (Ghosal and Sack, 1995). 

In this study, we conducted experiments to 
characterize Sb-Bi partitioning between bismuthi- 
nite-stibnites and solid solutions near the AgSbS2- 
AgBiS2 binary at 300, 350, 400 and 450~ We 
have used these brackets, as well as available 
constraints on phase equilibria in the AgSbS2- 
AgBiS2 subsystem (Keighin and Honea, 1969; 
Chang et al., 1977; Van Hook, 1960), to 
determine the non-idealities of Sb-Bi mixing in 
sulfides and sulfosalts in the AgSbS2-AgBiS2- 
Sb2S3-Bi2S3 quadrilateral subsystem. We also 
construct a T-X diagram for the AgSbS2-AgBiS2 
binary (Fig. 3) consistent with extant constraints 
on miscibility gaps and two-phase regions. 

Systematics 

Stibnite-bismuthinites (Pbnm; Klein and Hurlbut 
Jr., 1971) exhibit complete solid solubility in Sb- 
Bi at temperatures >~200~ (Springer and 
LaFlamme, 1971). The minerals approximating 
the AgSbSz-AgBiS2 binary subsystem, miargyrite, 
aramayoite, and matildite, exhibit limited solid 
solution at temperatures of ore deposition 

(-200-300~ However, at higher temperatures 
(-380~ AgSbS2, Keighin and Honea (1969); 
195~ AgBiS2, Van Hook, (1960)) they undergo 
polymorphic transitions to a galena-like face- 
centred cubic structure which forms an isomor- 
phous series across the AgSbS2-AgBiS2 binary 
join (e.g. Graham, 1951). The structures of all 
three low-temperature polymorphs are similar, 
being based on a galena-like layering of alternate 
S and Ag-Sb-Bi layers of atoms, and can be 
described in terms of pseudo-cubic sublattices 
with near-identical cell-edge lengths (Graham, 
1951). More recent structure refinements of the 
low-temperature forms (Knowles, 1964; Mullen 
and Nowacki, I974) describe statistical super- 
structures based on rock-salt-type substructures 
that differ from earlier structural estimations in 
their finer details, but these details are suspect 
because of the high R values in their calculations 
(12-13%) and because of the difficulty in 
distinguishing between Ag and Sb atoms by 
X-ray analysis deriving from their similar 
scattering properties (Knowles, 1964). The Ag 
and semi-metal atoms in the low-temperature 
structures are ordered into separate sites, resulting 
in a lowering of symmetry with respect to the 
high-temperature cubic structure (Graham, 1951). 
Additionally, the semi-metals atoms in the 
aramayoite (~AgsSb4BiSlo, Chang et al., 1977) 
structure appear to exhibit long-range ordering 
into two types of semi-metal sites. Based on 
arguments derived from analysis of the phase 
equilibria (e.g. Fig. 3), we have assumed that end- 
member  ' a r a m a y o i t e '  has the fo rmula  
AgsSb4BiSzo  r a the r  than the  f o r m u I a  
Ag6SbsBiSI2 suggested by Graham (1951). In 
contrast, the high-temperature cubic polymorph 
has a completely disordered arrangement of the 
Ag, Sb and Bi atoms within the metal-semi-metal 
layer (Graham, 1951). The close similarity 
between the low-temperature structures is consis- 
tent with their treatment as a continuous solid 
solution (referred to as 13-Ags(Sb,Bi)sSlo in this 
study), with immiscibility and the existence of a 
strongly ordered compound on the AgSbS2- 
AgBiS2  b i n a r y  j o i n  ( i .e .  a r a m a y o i t e ;  
AgsSb4BiSlo) narrowing the ranges of Sb-Bi 
solubility at the temperatures of deposition. This 
low-temperature (non-cubic) solid solution inverts 
to the high-temperature (cubic) solid solution 
(refen'ed to as ~-Ag(Sb,Bi)S2) at temperatures of 
195-380~ with the inversion involving a 
complete disordering of the Ag, Sb and Bi atoms 
(Graham, 1951). 
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Experimental 

The Sb-Bi exchange experiments (evacuated 
si l ica tubes; 3 0 0 - 4 5 0 ~  were conducted 
between bismuthinite-stibnites and solid solutions 
in the AgSbS2-AgBiS2 subsystem. The starting 
materials were synthesized from stoichiometric 
proportions of the pure elements (99.999% Ag 
shot, 99.999% Sb ingot, 99.9995% S pieces, 
99.999% Bi ingot) which were heated in 
evacuated silica tubes to temperatures above the 
liquidus. The melts were then quenched and 
annealed at a temperature (500~ below the 
solidus (519-801~ for 1 - 2  weeks. Quenched 
products were characterized with a CAMECA 
SX-50 electron microprobe and a SIEMENS 
D500 X-ray diffractometer. Phases in the 
AgSbS2-AgBiS2 subsystem homogenized after 
one such run. However, the bismuthinite-stibnites 
used in this study had to be re-ground and re- 
annealed three times ( i - 2  weeks for each run) to 
attain homogeneity in these products, contrary to 
the claims of earlier workers (Springer and 
Laflamme, 1971) that homogeneity could be 
achieved at 500~ in a few days. The exchange 
experiments were conducted as described in 
GhosaI and Sack (1995), with tiny grains of  
solid solutions in the AgSbSz-AgBiS2 system 
immersed in substantially larger volumes of finely 
ground bismuthinite-stibnite in each experiment 
(Table 1). The experiments were annealed at 
300-450~ for 2 - 4  months and then quenched. 
The quenched products were mounted in cold- 
setting epoxy and then polished using 3 g alumina 
powder and 1 g diamond paste. The final 
composition of the Ag(Sb,Bi)S2 grain was 
analysed using a CAMECA SX-50 electron 
microprobe (20 kV, 10 na, 1 10 ~t beam-size). 
The standards used were synthetic AgSbS2 (Ag, 
Sb, S) and AgBiS2 (Bi). The analytical precision 
of the analyses (x /~ /N;  N =  counts), determined 
from Poisson statistics of cotmts on standards, 
was <0.5% for all elements. Based on microprobe 
analyses of internal standards, we believe that 
analyses are accurate to better than _+2% for 
elements present in concentrations >3 wt%. 

Experimental results 

The results of the Sb-Bi exchange experiments 
between bismuthinite-stibnites and solid solutions 
in the AgSbS2-AgBiS2 subsystem (i.e. cz- and 
[3-Ag(Sb,Bi)S2) at 300 and 450~ (Table 1) are 
plotted as brackets on the apparent configurational 

energy of the exchange reaction RTlnKD 

(where RTlnKD (1 - X~) jfBS _ _  B i . 
(1 

where @ - ct- or I3-Ag(Sb,Bi)S2; BS --- 
bismuthinite-stibnite) against molar Bi/(Bi + Sb) 
ratios in bismuthinite-stibnite (Fig. 2). The 
r e v e r s a l  b r a c k e t s  on  RTlnKD for  the 
~-Ag(Sb,Bi)S2 solution indicate limited parti- 
tioning of Sb and Bi between ~-Ag(Sb,Bi)S2 
and bismuthinite-stibnites for X~B s ~< 0.5 at 
450~ and ~> 0.6 at 300~ In contrast, the 

f * o '  
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Fie. 2. Apparent configurational Gibbs energies 
(t - XB~i) XBBi S ; ) 

(RTlnKo; KD = XB~i (1 BS 
X B i  ) 

of Sb-Bi exchange reactions between bismutinite- 
stibnites (BS) and a- and ~-Ag(Sb,Bi)S2 solid solutions 
(r as functions of the molar Bi/(Bi+Sb) ratios of 
bismutinite-stibnites (X~BiS). Empty and filled squares, 
ellipses with vertical major axes and rhombi represent 
450, 400 and 300~ brackets on Sb-Bi partitioning 
between bismutinite-stibnites and ~-Ag(Sb,Bi)S2 solid 
solutions (empty symbols represent brackets for which 
RTlnKD decreased during experiment). Circles and 
ellipses with horizontal major axes represent 300 and 
350~ brackets on Sb-Bi partitioning between bismnti- 
nite-stibnites and ~-Ag(Sb,Bi)S2 solid solutions. 
Labelled curves give values of RTlnKD calculated using 
equations 7 and 13 for the parameters given in Table 2. 
Arrows indicate direction of change in RTlnKD during 

the experiments. 

725 



S, GHOSAL AND R.O. SACK 

400 ~ " - - ' -  G* = a*@ T~IC �9 (1) 

[ ~ A g ( S b ' B i ) S  2 
For bismuthinite-stibnite (BS; (Sb,Bi)2S3), the 

3 0 0 ~ ' o - >  

T(~ IGOr. ~ "~  
. . . . .  

. . . .  I I I  . . . .  I i i i i I i i I i I i i i 

Gibbs energy can be adequately described with a 
symmetric regular solution model. In this model, 
the vibrational Gibbs energy is given by the 
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FIG. 3. Temperature-composition (T X) diagram for the 
AgSbS2-AgBiS2 subsystem. Filled rhombi represent 
mixtures that homogenized on annealing (Chang et al., 
1977). Empty circle represents an initial homogeneous 
composition that umnixed on annealing (this study); 
filled circles" represent compositions that remained 
homogeneous during annealing. Arrows" represent 
brackets on the two-phase region between c~- and 
[~-Ag(Sb,Bi)S2. Upright and inverted triangles represent 
natural aramayoite compositions reported by Borodayev 
et al. (1986; XBi ~ 0.35, T ~ 250~'C) and Graham 
(1951; Xbi ~ 0. I7, T> 150~ as required by the phase 

diagram) respectively. 

partitioning between bismuthinite-stibnites and 
the [3-Ag(Sb,Bi)S2 solution is strongly dependent 
on the composition of bismuthinite-stibnite, with 
0.2 ~< X~B s ~< 0.5 at 300~ The experiments also 
demonstrate that the a-Ag(Sb,Bi)S2 solution does 
not coexist stably with bismuthinite-stibnites with 
X~B s ~> 0.6 at 450~ and >~ 0.9 at 300~ as the 
c~-Ag(Sb,Bi)S2 compositions in these experiments 
undergo partial breakdown to pavonite (AgBi3Ss). 
In addition, our experiments indicate that a single 
a- or [3-Ag(Sb,Bi)S2 solution with XBi 0.4 is not 
stable at 300~ as homogeneous grains with that 
ini t ial  composi t ion  unmixed  into a- and 
[3-Ag(Sb,Bi)S2 solutions with X~u s ~> 0.5 and 
X~Bi s ~< 0.3 respectively (Fig. 3). 

expression 

6 ,Bs  a 0 B S q  x ~ s ) + o O ~ S x B S  
= Sb2g3~, - -  Bi2S 3 hi  + 

and the configurational component is formulated 
based on an assumption of random mixing of Sb 
and Bi on the semi-metal site with a multiplicity 
of two in the (Sb,Bi)2S3 formula unit, 

~lc BS = _2R[X~Bi s inX~BS + 
(1 - A~Bi s) ln(l - X~B s) (3) 

A symmetric regular solution model may also 
be used to describe the Gibbs energy of the 
~-Ag(Sb,Bi)S2 solid solution, with a vibrational 
component 

(3"~ X ~ 1~,o~ = ~ A 2 S b S 2 (  1 __ X ~ i )  + AgBiS2 Bi + 

W ~ V ~ ' l  X~i) (4) Bi-Sb ~ Bik 

and a configurational component that assumes 
random mixing of Ag, Sb and Bi on the two 
cation sites with exactly 50% of the sites being 
occupied by Ag atoms, 

~IC  ez = _2R[�89 + ~A~i l n - ~ i  + 

�89 - JffBi) ln�89 ~ i ) ]  (5) 

The exchange reaction between bismuthinite- 
stibnite and the c~-Ag(Sb,Bi)Sa solid solution 

�89 + AgSbS2 = AgBiS2 + �89 (6) 

can be formulated as 

, r(~-.,,:-~,/x~.7] lw~S ~, 2x~B s) = RT m [ ~ j  + ~ Bi-Sb~" 

A&o BS-a uBiSb + W~i_Sb(1 -- 2X~) (7) 

where 

/~kJBiSbAt=~0 BS--o; ---- ( A G A g B i S 2  - AgSbS2 ) 

l r~o BS Go Bs~ ~v'~Bi2s3- Sb~S~ (8) 

Thermodynamic formulation 
The molar Gibbs energy of a solid solution @ can 
be described in terms of its configurational 
( - T S  lc '~) and non-configurational (or vibra- 
tional; G *~) components, 

In formulating the Gibbs energy of the 
13-Ag(Sb,Bi)S2 phases  ( i .e .  m i a r g y r i t e ,  
AgsSbsSlo; aramayoite, AgsSb4BiSlo; matil- 
dite, AgsBisSlo), we assume that these phases 
display pronounced long-range ordering of Sb 
and Bi atoms between two non-equivalent  
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semi-metal sites (I and II) which occur in a 
ratio of multiplicities of  4:1. A formula unit 
based on 10 S atoms is chosen for the [3- 
Ag(Sb,Bi)S2 solid solution to simplify the 
formula t ion  of the model  for the Gibbs 
energy, and, the species Ags(Sb)I(Bi)HS~0 
represents a fully ordered 'aramayoite '  compo- 
nent that is stable at low temperatures. Molar 
compositional and ordering variables may be 
defined as 

X~Bi = Bi/(Bi + Sb) 
and (9) 

The vibrational component of the Gibbs energy 
of  [3-Ag(Sb,Bi)S; solid solut ions can be 
adequately expressed as a second-order Taylor's 
expansion in these compositional and ordering 
variables: 

(3"13 = go + gx(X~i) + g,(s  ~) + gxx(X~i) 2 + 
g~, (s13) 2 + gxs(X~Bi)(s13), (10) 

Following procedures outlined elsewhere (e.g. 
Sack, 1992) the coefficients in equation 10 may 
be ready related to end-member  energies 
(~Og~aSbsSio, - 0 13 GAgsBisS,0) , energies of ordering and 
reciprocal reactions (A(3 ~ and A G ~  
Table 2), and symmetric Margules-type para- 
meters describing non-idealities of Sb-Bi mixing 
on sites I and IX (W~sb  and W~i~b; Table 2): 

-013 

( A G  0 13 + WIi~'Sb+ W~i~Sb)(X~Bi)( l -  X~Bi) + 
3 - o  13+ iAt,~o ~5 I I j5 4 H 13 13 (y6AGx ~ - ~  -- ~WB~_Sb + FWBi_Sb)(S ) + 
4 - 0  [3 I Vllfl ~ 16~tlflI 13 .,(.13~2 (5~ AGx 2~ ** Bi-Sb-- ~ * *  Bi-Sb)k a ) + 

( - ~ A G x  0 [3 + 2 W I f f s  b - 8WIB/i~b)(X~Bi)(S13 ) (11) 

For the molar configurational entropy of the ~3- 
Ag(Sb,Bi)S2 solid solution we may write the 
following formulation based on the assumption 
that Sb and Bi display long-range nonconvergent 
ordering between sites I and II (e.g. Harlov and 
Sack, 1994). 

g~c 13 _ -R[4(1 - X~m + �89 - AJ~i + ~s ~) + 

4(X~i - 1s13)ln(X~i ~$13) + 

(1 ~Bi - 4s13)ln(1 - X13~i - 4s13) + 

(3~, + ~s~)ln(X~si + ~s13) (12) 

The Sb-Bi exchange reac t ion  be tween  
bismuthinite-stibnite and the [3-Ag(Sb,Bi)S2 
solid solution 

1BizS3 + �89 : 1Ag5BisSlo + ~Sb2S 3 (13) 

can thus be described as 

4 1/5 
[/(1-X~i+lsl3) (1 X-~i-4s[)~) I X~ s ] 

R T  In  [). (x~ ~Xlg)4(ZYB~i+43 "3) ] (1 XBBiS)J --  

A~O BS-13 + I~.xfBS : /  BiSb ~ vr Bi_Sb~l - -  2X~B s) = 
1 -0 [3  I13 3 (AGx + WBi_Sb + W ~ i ~ b ) ( 1  - -  2~) + 

l ( - 3 a 6  ~ 13 + - sw i_gu)(s13) (14) 

where 

AY%O BS-13 __ I / nO  13 . GOAg~SbsSI0) ~BiSb 5k'JAgsB15SIo -- 
1 /~0  BS t.=,~O BS~ 
2\ Ag5 SbsSto vJ Sb2S3) 

A.~0 BS-u -- A~0Ag~Sb>#z A(~Og~t~i~2 (15 )  kJBiSb T 

The value of s ~ for a given X~ui and T can be 
determined by applying the condition of homo- 
geneous equilibrium to the Gibbs energy of the 
solid solution 

(0(3/~s13) = 0 (16) 

which gives us the equation 

R T  In [(X~i-�89 X~i 4s~)] = 

(- AG ~ 13 + 13 - lwL _s  + + 
2 - 0  13 1 W 1 ~ 811fl I ! 3 ~[o13~ (3AGx - N Bi-Sb --  3 vv Bi.Sb)%~ ) + 

3 - 0  !3 l w I  13 II 13 ( ~AG~ + g Bi-Sb -- 2WBi-Sb)(Xam) (17) 

Finally, the condition of equilibrium for the Sb- 
Bi exchange reaction between the ~- and [3- 
Ag(Sb,Bi)S2 solid solutions, 

AgBiS2 + �89 = ~AgsBisS10 + AgSbS2 (18) 

may be derived by subtracting equation 7 from 14. 

4 1/5 

R T  In  [-[ (X~Bi_�89247 ~ (l_X~i)] + 

- ~--AgSbS:  + W~i_Sb(1 - -  2 ~ i )  = 
i - o 1 3  
3 ( a G x  + + 2 i) + 
I (_3AQx ~ 13 + 2WI~sb --  gWlBli_~Sb)(S 13) (19) 

Calibration of thermodynamic models 

In conjunction with constraints on the transition 
temperatures between the ct- and I3-Ag(Sb,Bi)S2 
solutions, and bounds on the width of their two- 
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phase loop, we may develop a calibration for the 
pa ramete r s  de sc r ib ing  Sb-Bi  m i x i n g  in 
bismuthinite-stibnite and ~- and 13-Ag(Sb,Bi)S2 
based on analysis of our brackets on Sb-Bi 
partitioning. The parameters are tightly bound, if it 
is assumed that the standard state Gibbs energies of 
the Sb-Bi exchange reactions (Eqns 8, 15) are 
independent of temperature (e.g. Sack and Ghiorso, 
1989; Harlov and Sack, 1994). As a first 
approximation, we may also assume that the 
entropy of the ordering reaction (Ag o 13),and the 
enthalpy and entropy of the reciprocal reaction 
(AfI o f3, AgO 13), for the ~3-Ag(Sb,Bi)S2 solid solution 
are zero (Table 2). Finally, we may assume that the 
entropy changes of the [3+~ transitions are entirely 
due to the configurational effect of the complete 
disordering ofAg, Sb and Bi between the metal and 
semi-metal sites that are distinct in the low- 
temperature ordered (6) structure (e.g. Graham, 
1951). For this assumption, the entropies of the 
13~ct transitions in the AgSbS2 and AgBiS2 end- 
members (Ag~  Ag0A~is~) are 2Rln2 per 
formula unit, and values of All ~ 13~ for these 
transitions (determined from the relation AIrt ~ 13~ = 
T AS ~ 13~; T ~ 380~ for AgSbS2; 190~ for 
AgBiS2) are consistent with the calorimetric 
determinations of Bryndzia and Kleppa (1989). 
With these assumptions and the requirement that 
W Bs Bi-Sb ~< 14.0 kJ/gfw (bismuthinite-stibnites 
exhibit continuous solid solubility at temperatures 
>~200~ Springer and Laflamme, 1971), we may 
readily develop a calibration for the condition of 
equilibrium of the Sb-Bi exchange reaction between 
bismuthinite-stibnite and the ~-Ag(Sb,Bi)S2 solid 
solution (Equation 7) that satisfies our brackets on 
Sb-Bi partitioning between these phases at 
300-450~ (Fig. 2), provided W Bs W ~ Bi-Sb ~ Bi-Sb~ 
A[~,O BS-cr ~-JBi-Sb ~ 2 . 6 - - 3 . 2  kJ/gfw. 

Examination of the conditions of Bi-Sb 
exchange equilibrium between bismuthinite-stib- 
nite and [3-Ag(Sb,Bi)S2 (Equation 14), and 
between coexist ing ~- and 13-Ag(Sb,Bi)S2 
(Equation 18), allows the value of WBBSsb to be 

n 13 refined, and values Of WBi-Sb (assumed to be equal 
to 4W) and AIrI ~ 13 to be determined (Table 2). The 
strong composition dependence on the apparent 
Gibbs energy of the Sb-Bi exchange reaction 
between bismuthinite-stibnite and 13-Ag(Sb,Bi)S2 
can only be satisfied if tW~ 13 W u 13 ~ Bi Sb ( =  Bi-Sb) is 

lwBS greater than g Bi-Sb by at least 2 kJ/gfw, and if 
the standard state Gibbs energy of the reaction 

3AgsSbsSlo + Ags(Bi)~(Sb)nSlo = 
~AgsBisSlo + AgdSb)~(Bi)nSlo 

is strongly negative (i.e. AI=I ~ 13 < - 1 0  kJ/gfw). 
w B S  Values or Bi-Sb > 14.0 kJ/gfw require values of 

�88 (>9.5 kJ/gfw) that are also 
unrealistically large, predicting miscibility gaps 
between miargyrite and aramayoite, and between 
aramayoite and matildite too extensive to satisfy 
experimental and natural constraints, respectively. 

W n 13 For example, values of Bi-Sb > 9.5 kJ/gfw 
require miscibility gaps to appear at T > 300~ 
(Xm ~ 0.10), but  in our  exper iments ,  
Ag(Sb,Bi)S2 grains of this composition were 
stable to annealing for 4 months at 300~ 
Equivalent values for ! W ~ s b  require miscibility 4 
gaps between aramayoite and matildite too 
extensive to accommodate the natural aramayoite 
composition reported by Borodayev et al. (1986; 
XBi ~ 0.35; Fig. 3). 

At the opposite extreme, the assumption of 
i d e a l  m i x i n g  in  b i s m u t h i n i t e - s t i b n i t e  

BS = (WBi_Sb 0 . 0 ) ,  values of iWI~s b and wHi~b of 
at least 6.0 kJ/gfw are required. Calibrations 
predicted on this assumption may be considered 
problematic because of the large implied differ- 
ence in non-ideality of Sb-Bi substitution in 
solutions with similar structures. We therefore 
adopt the calibration for parameters given in 

W Bs o f  T a b l e  2 fo r  a v a l u e  o f  Bi-Sb 
12.0--+2.0 kJ/gfw, to achieve maximal correspon- 
dence between the models and experimental data, 
as well as be consistent with the premise that the 
energetic consequences of Sb-Bi substitution 
should not be grossly different in materials with 
similar structures. The calibrated parameters are 
used in constructing a phase diagram for the 
AgSbS2-AgBiS2 binary subsystem (Fig. 3), and 
the resulting calculated miscibility gaps between 
the [3-Ag(Sb,Bi)S2 sulfosal ts ,  miargyr i te ,  
aramayoite and matildite, are consistent with 
phase assemblages and compositions observed in 
nature. 

Conclusions 

Antimony-bismuth mixing in sulfides and argen- 
tian sulfosalts is significantly non-ideal, in 
accordance with similar non-idealities exhibited 
by their As-Sb counterparts (Ghosal and Sack, 
1995). Bismuthinite-stibnites (W~Ssb ~ 12.0 k J/ 
gfw) are predicted to exsolve at temperatures 
~<88~ consistent with their exhibiting contin- 
uous solid solution in hydrothermal ore deposits 
(T ~ 150-350~ but exhibiting preponderances 
in molar ratios towards the end-members (Lueth, 
1988; Fig. 1). The non-idealities in disordered 
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Sb-Bi sulfides and sulfosalts are found to be less 
than that of their As-Sb counterparts, with the 
exception of ordered compounds (Table 2; Ghosal 
and Sack, 1995), and this can be attributed to the 
lesser relative size difference between Sb and Bi 
atoms, causing smaller strain effects. 
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