Bi-Sb energetics in sulfosalts and sulfides

S. GHOSAL¹ AND R. O. SACK^{2*}

¹Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN, 47907-1397, USA ²Department of Geological Sciences, Box 351310, University of Washington, Seattle, WA, 98195-1310, USA

ABSTRACT

Experimental brackets (300–450°C) on Sb-Bi partitioning between stibnite-bismuthinites (Sb,Bi)₂S₃ and sulfosalts in the AgSbS₂–AgBiS₂ binary subsystem (α -Ag(Sb,Bi)S₂, β -Ag₅(Sb,Bi)⁴₄(Sb,Bi)^{II}S₁₀) and extant constraints are used to define mixing properties and standard state Gibbs energies of Sb-Bi exchange reactions. They are also used to construct a phase diagram for Ag(Sb,Bi)S₂ sulfosalts. We infer that the non-ideality associated with Sb-Bi mixing is largest in minerals of the β -Ag₅(Sb,Bi)⁴₄(Sb,Bi)^{II}S₁₀ series, and is sufficient to produce miscibility gaps between an ordered intermediate species Ag₅(Sb)⁴₄(Bi)^{II}S₁₀ and Sb- and Bi-end-members at $T < 240^{\circ}$ C (measured in terms of symmetric regular-solution-type parameters $\frac{1}{4}W_{BI-Sb}^{II} = W_{BI-Sb}^{II} \sim 8.5 \text{ kJ/gfw}$). The non-ideality associated with the Sb-Bi substitution in stibnite-bismuthinite and α -Ag(Sb,Bi)S₂ is \approx 70% that in the Ag₅(Sb,Bi)⁴₄(Sb,Bi)^{II}S₁₀ series (W_{BI-Sb}^{BS} \approx 12.0 \text{ kJ/gfw}; W_{BI-Sb}^{\alpha} \approx 6.0 \text{ kJ/gfw}). It is insufficient to produce exsolution at temperatures of ore deposition ($T > T_c \approx 88^{\circ}$ C), but most likely is responsible for a preponderance in molar Sb/Bi ratios towards end-member compositions. Finally, positive Gibbs energies of the Sb-Bi exchange reactions

 $\begin{array}{l} \frac{1}{2}Bi_2S_3 + AgSbS_2 = AgBiS_2 + \frac{1}{2}Sb_2S_3 \ (\Delta\bar{G}^{BS-\alpha}_{Bi-Sb} \approx 2.70 \ kJ/gfw) \\ \text{and} \qquad \frac{1}{2}Bi_2S_3 + \frac{1}{5}Ag_5Sb_5S_{10} = \frac{1}{5}Ag_5Bi_5S_{10} + \frac{1}{2}Sb_2S_3 \ (\Delta\bar{G}^{BB-\beta}_{Bi-Sb} \approx 4.89 \ kJ/gfw) \\ \text{indicate that Bi is more compatible in stibuite-bismuthinite sulfides than in } Ag(Sb,Bi)S_2 \ sulfosalts. \end{array}$

Keywords: bismuthinite-stibnites, $Ag(Sb,Bi)S_2$ sulfosalts, Sb-Bi energetics, ordering and exchange reactions.

Introduction

ANTIMONY- and Bi-rich sulfides and sulfosalts with compositions approximating those in the Ag₂S– Sb₂S₃–Bi₂S₃ system (stibnite-bismuthinites, (Sb,Bi)₂S₃; miargyrite, Ag(Sb,Bi)S₂, $X_{Bi} \approx 0.0$; aramayoite, Ag(Sb,Bi)S₂, $0.17 \leq X_{Bi} \leq 0.35$; matildite, Ag(Bi,Sb)S₂, $X_{Bi} \approx 1.0$) are common constituents in polymetallic hydrothermal sulfide ore deposits of epithermal-mesothermal vein type (e.g. Bartos, 1990; Boldyreva, 1970; Borodayev *et al.*, 1986; Brooker and Jaireth, 1995; Bussell *et al.*, 1990; Ruvalcaba-Ruiz and Thompson, 1988; Czamanske and Hall, 1975; Gibson *et al.*, 1990; Gilmer *et al.*, 1988; Goodell, 1974; Goodell and Petersen, 1974; Gröpper *et al.*, 1991; Hayase, 1955; Jeppson, 1987; Johnson and Meinert, 1994; Kelly and Turneaure, 1970; Lueth, 1988; Lueth et al., 1990; Petersen et al., 1977; Petruk, 1968; Sillitoe et al., 1975; Springer, 1969; Stone, 1959; Turneaure, 1971). Among these minerals, bismuthinite-stibnites exhibit distinct compositional variations along flow paths of mineralizing fluids in ore deposits that are characterized by preponderances of molar Bi/(Bi+Sb) ratios near the end-members, with a conspicuous paucity of intermediate compositions (Fig. 1). Such a pattern of molar semi-metal ratios is suggestive of significant non-ideality of Sb-Bi mixing in bismuthinite-stibnites (e.g. Ghosal and Sack, 1995). Previous workers (e.g. Lueth et al., 1990) have attributed such variations in molar Bi/(Bi+Sb) ratios to a process referred to as 'semi-metal boiling', whereby preferential volatilization of antimony from the ore fluid at a point along the flow path is held responsible for the sudden change

^{*}Corresponding author

FIG. 1. Histogram of number of analyses (# Analyses) vs molar Bi/(Bi + Sb) ratios (X_{Bi}^{BS}) of bismuthinite-stibnites taken from compilations of Springer (1969) and Lueth (1988).

in bismuthinite-stibnite Bi/Sb ratios. However, a similar pattern of semi-metal abundance ratios is observed in the argentian sulfosalt pyrargyrite-proustite ($Ag_3(As,Sb)S_3$), and is due to non-ideality of As-Sb mixing (Ghosal and Sack, 1995).

In this study, we conducted experiments to characterize Sb-Bi partitioning between bismuthinite-stibnites and solid solutions near the AgSbS₂-AgBiS₂ binary at 300, 350, 400 and 450°C. We have used these brackets, as well as available constraints on phase equilibria in the AgSbS₂-AgBiS₂ subsystem (Keighin and Honea, 1969; Chang *et al.*, 1977; Van Hook, 1960), to determine the non-idealities of Sb-Bi mixing in sulfides and sulfosalts in the AgSbS₂-AgBiS₂-Sb₂S₃-Bi₂S₃ quadrilateral subsystem. We also construct a *T-X* diagram for the AgSbS₂-AgBiS₂ binary (Fig. 3) consistent with extant constraints on miscibility gaps and two-phase regions.

Systematics

Stibnite-bismuthinites (*Pbnm*; Klein and Hurlbut Jr., 1971) exhibit complete solid solubility in Sb-Bi at temperatures $\ge 200^{\circ}$ C (Springer and LaFlamme, 1971). The minerals approximating the AgSbS₂-AgBiS₂ binary subsystem, miargyrite, aramayoite, and matildite, exhibit limited solid solution at temperatures of ore deposition

(~200-300°C). However, at higher temperatures (~380°C, AgSbS₂, Keighin and Honea (1969); 195°C, AgBiS₂, Van Hook, (1960)) they undergo polymorphic transitions to a galena-like facecentred cubic structure which forms an isomorphous series across the AgSbS2-AgBiS2 binary join (e.g. Graham, 1951). The structures of all three low-temperature polymorphs are similar, being based on a galena-like layering of alternate S and Ag-Sb-Bi layers of atoms, and can be described in terms of pseudo-cubic sublattices with near-identical cell-edge lengths (Graham, 1951). More recent structure refinements of the low-temperature forms (Knowles, 1964; Mullen and Nowacki, 1974) describe statistical superstructures based on rock-salt-type substructures that differ from earlier structural estimations in their finer details, but these details are suspect because of the high R values in their calculations (12-13%) and because of the difficulty in distinguishing between Ag and Sb atoms by X-ray analysis deriving from their similar scattering properties (Knowles, 1964). The Ag and semi-metal atoms in the low-temperature structures are ordered into separate sites, resulting in a lowering of symmetry with respect to the high-temperature cubic structure (Graham, 1951). Additionally, the semi-metals atoms in the aramayoite (~Ag₅Sb₄BiS₁₀, Chang et al., 1977) structure appear to exhibit long-range ordering into two types of semi-metal sites. Based on arguments derived from analysis of the phase equilibria (e.g. Fig. 3), we have assumed that endmember 'aramayoite' has the formula $Ag_5Sb_4BiS_{10}$ rather than the formula Ag₆Sb₅BiS₁₂ suggested by Graham (1951). In contrast, the high-temperature cubic polymorph has a completely disordered arrangement of the Ag, Sb and Bi atoms within the metal-semi-metal layer (Graham, 1951). The close similarity between the low-temperature structures is consistent with their treatment as a continuous solid solution (referred to as β -Ag₅(Sb,Bi)₅S₁₀ in this study), with immiscibility and the existence of a strongly ordered compound on the AgSbS₂-AgBiS₂ binary join (i.e. aramayoite; Ag₅Sb₄BiS₁₀) narrowing the ranges of Sb-Bi solubility at the temperatures of deposition. This low-temperature (non-cubic) solid solution inverts to the high-temperature (cubic) solid solution (referred to as α-Ag(Sb,Bi)S₂) at temperatures of 195–380°C, with the inversion involving a complete disordering of the Ag, Sb and Bi atoms (Graham, 1951).

Experimental

The Sb-Bi exchange experiments (evacuated silica tubes; $300-450^{\circ}$ C) were conducted between bismuthinite-stibnites and solid solutions in the AgSbS₂-AgBiS₂ subsystem. The starting materials were synthesized from stoichiometric proportions of the pure elements (99,999% Ag shot, 99.999% Sb ingot, 99.9995% S pieces, 99.999% Bi ingot) which were heated in evacuated silica tubes to temperatures above the liquidus. The melts were then quenched and annealed at a temperature (500°C) below the solidus (519-801°C) for 1-2 weeks. Quenched products were characterized with a CAMECA SX-50 electron microprobe and a SIEMENS D500 X-ray diffractometer. Phases in the AgSbS₂-AgBiS₂ subsystem homogenized after one such run. However, the bismuthinite-stibnites used in this study had to be re-ground and reannealed three times (1-2 weeks for each run) to attain homogeneity in these products, contrary to the claims of earlier workers (Springer and Laflamme, 1971) that homogeneity could be achieved at 500°C in a few days. The exchange experiments were conducted as described in Ghosal and Sack (1995), with tiny grains of solid solutions in the AgSbS₂-AgBiS₂ system immersed in substantially larger volumes of finely ground bismuthinite-stibnite in each experiment (Table 1). The experiments were annealed at 300-450°C for 2-4 months and then quenched. The quenched products were mounted in coldsetting epoxy and then polished using 3 μ alumina powder and 1 µ diamond paste. The final composition of the Ag(Sb,Bi)S₂ grain was analysed using a CAMECA SX-50 electron microprobe (20 kV, 10 na, $1-10 \mu$ beam-size). The standards used were synthetic AgSbS₂ (Ag, Sb, S) and AgBiS₂ (Bi). The analytical precision of the analyses $(\sqrt{N}/N; N = \text{counts})$, determined from Poisson statistics of counts on standards, was <0.5% for all elements. Based on microprobe analyses of internal standards, we believe that analyses are accurate to better than +2% for elements present in concentrations >3 wt%.

Experimental results

The results of the Sb-Bi exchange experiments between bismuthinite-stibnites and solid solutions in the AgSbS₂-AgBiS₂ subsystem (i.e. α - and β -Ag(Sb,Bi)S₂) at 300 and 450°C (Table 1) are plotted as brackets on the apparent configurational

energy of the exchange reaction $RTlnK_D$

(where
$$\operatorname{RTln} K_D = \frac{(1 - X_{\text{Bi}}^{\Phi})}{X_{\text{Bi}}^{\Phi}} \frac{X_{\text{Bi}}^{\text{BS}}}{(1 - X_{\text{Bi}}^{\text{BS}})};$$

where $\Phi \equiv \alpha$ - or β -Ag(Sb,Bi)S₂; BS \equiv bismuthinite-stibnite) against molar Bi/(Bi + Sb) ratios in bismuthinite-stibnite (Fig. 2). The reversal brackets on RTlnK_D for the α -Ag(Sb,Bi)S₂ solution indicate limited partitioning of Sb and Bi between α -Ag(Sb,Bi)S₂ and bismuthinite-stibnites for $X_{Bi}^{BS} \leq 0.5$ at 450°C, and ≥ 0.6 at 300°C. In contrast, the

FIG. 2. Apparent configurational Gibbs energies

(RTln
$$K_D$$
; $K_D = \frac{(1 - X_{\text{Bi}}^{\Phi})}{X_{\text{Bi}}^{\Phi}} \frac{X_{\text{Bi}}^{\text{BS}}}{(1 - X_{\text{Bi}}^{\text{BS}})};$)

of Sb-Bi exchange reactions between bismutinitestibnites (BS) and α - and β -Ag(Sb,Bi)S₂ solid solutions (Φ) as functions of the molar Bi/(Bi+Sb) ratios of bismutinite-stibnites (X_{Bi}^{BS}) . Empty and filled squares, ellipses with vertical major axes and rhombi represent 450, 400 and 300°C brackets on Sb-Bi partitioning between bismutinite-stibuites and α -Ag(Sb,Bi)S₂ solid solutions (empty symbols represent brackets for which $RTlnK_D$ decreased during experiment). Circles and ellipses with horizontal major axes represent 300 and 350°C brackets on Sb-Bi partitioning between bismutinite-stibnites and β -Ag(Sb,Bi)S₂ solid solutions. Labelled curves give values of $RTlnK_D$ calculated using equations 7 and 13 for the parameters given in Table 2. Arrows indicate direction of change in $RTlnK_D$ during the experiments.

FIG. 3. Temperature-composition (T-X) diagram for the AgSbS₂-AgBiS₂ subsystem. Filled *rhombi* represent mixtures that homogenized on annealing (Chang *et al.*, 1977). Empty *circle* represents an initial homogeneous composition that unmixed on annealing (this study); filled *circles* represent compositions that remained homogeneous during annealing. *Arrows* represent brackets on the two-phase region between α - and β -Ag(Sb,Bi)S₂. Upright and inverted triangles represent natural aramayoite compositions reported by Borodayev *et al.* (1986; $X_{\text{Bi}} \approx 0.35$, $T \approx 250^{\circ}$ C) and Graham (1951; $X_{\text{bi}} \approx 0.17$, $T > 150^{\circ}$ C as required by the phase diagram) respectively.

partitioning between bismuthinite-stibnites and the β -Ag(Sb,Bi)S₂ solution is strongly dependent on the composition of bismuthinite-stibnite, with $0.2 \leq X_{Bi}^{Bi} \leq 0.5$ at 300°C. The experiments also demonstrate that the α -Ag(Sb,Bi)S₂ solution does not coexist stably with bismuthinite-stibnites with $X_{Bi}^{BS} \geq 0.6$ at 450°C and ≥ 0.9 at 300°C, as the α -Ag(Sb,Bi)S₂ compositions in these experiments undergo partial breakdown to pavonite (AgBi₃S₅). In addition, our experiments indicate that a single α - or β -Ag(Sb,Bi)S₂ solution with $X_{Bi} = 0.4$ is not stable at 300°C, as homogeneous grains with that initial composition unmixed into α - and β -Ag(Sb,Bi)S₂ solutions with $X_{Bi}^{BS} \geq 0.5$ and $X_{Bi}^{BS} \leq 0.3$ respectively (Fig. 3).

Thermodynamic formulation

The molar Gibbs energy of a solid solution Φ can be described in terms of its configurational $(-T\bar{S}^{IC} \Phi)$ and non-configurational (or vibrational; $\bar{G}^{*\Phi}$) components,

$$\bar{\mathbf{G}}^{\Phi} = \bar{\mathbf{G}}^{*\Phi} - \mathbf{T}\bar{\mathbf{S}}^{\mathrm{IC}\ \Phi} \tag{1}$$

For bismuthinite-stibnite (BS; $(Sb,Bi)_2S_3$), the Gibbs energy can be adequately described with a symmetric regular solution model. In this model, the vibrational Gibbs energy is given by the expression

$$\bar{G}^{*BS} = \bar{G}^{0 BS}_{5b_2S_3}(1 - X^{BS}_{Bi}) + \bar{G}^{0 BS}_{Bi_2S_3}X^{BS}_{Bi} + W^{BS}_{Bi-Sb}X^{BS}_{Bi}(1 - X^{BS}_{Bi})$$
(2)

and the configurational component is formulated based on an assumption of random mixing of Sb and Bi on the semi-metal site with a multiplicity of two in the (Sb,Bi)₂S₃ formula unit,

$$\bar{S}^{IC BS} = -2R[X_{Bi}^{BS} \ln X_{Bi}^{BS} + (1 - X_{Bi}^{BS}) \ln(1 - X_{Bi}^{BS})$$
(3)

A symmetric regular solution model may also be used to describe the Gibbs energy of the α -Ag(Sb,Bi)S₂ solid solution, with a vibrational component

$$\bar{\mathbf{G}}^{\ast \alpha} = \bar{\mathbf{G}}^{\ast \alpha}_{\mathsf{AgSbS}_{2}}(1 - X^{\alpha}_{\mathsf{Bi}}) + \bar{\mathbf{G}}^{\ast \alpha}_{\mathsf{AgBiS}_{2}}X^{\alpha}_{\mathsf{Bi}} + W^{\alpha}_{\mathsf{Bi-Sb}}X^{\alpha}_{\mathsf{Bi}}(1 - X^{\alpha}_{\mathsf{Bi}})$$
(4)

and a configurational component that assumes random mixing of Ag, Sb and Bi on the two cation sites with exactly 50% of the sites being occupied by Ag atoms,

$$\bar{S}^{IC \alpha} = -2R[\frac{1}{2}ln_2^1 + \frac{1}{2}X_{Bi}^{\alpha} ln_2^1X_{Bi}^{\alpha} + \frac{1}{2}(1 - X_{Bi}^{\alpha}) ln_2^1(1 - X_{Bi}^{\alpha})]$$
(5)

The exchange reaction between bismuthinitestibnite and the α -Ag(Sb,Bi)S₂ solid solution

$$\frac{1}{2}Bi_{2}S_{3} + AgSbS_{2} = AgBiS_{2} + \frac{1}{2}Sb_{2}S_{3}$$
(6)

can be formulated as

$$\text{RT} \ln \left[\frac{(1 - X_{\text{Bi}}^{\alpha}) X_{\text{Bi}}^{\text{HS}}}{X_{\text{Bi}}^{\alpha} (1 - X_{\text{Bi}}^{\text{HS}})} + \frac{1}{2} W_{\text{Bi-Sb}}^{\text{BS}} (1 - 2X_{\text{Bi}}^{\text{BS}}) = \Delta \tilde{G}_{\text{BiSb}}^{0} {}^{\text{BS}-\alpha} + W_{\text{Bi-Sb}}^{\alpha} (1 - 2X_{\text{Bi}}^{\alpha})$$
(7)

where

$$\Delta \bar{\mathbf{G}}_{\text{BiSb}}^{0 \text{ BS}-\alpha} = (\Delta \bar{\mathbf{G}}_{\text{AgBiS}_2}^* - \bar{\mathbf{G}}_{\text{AgSbS}_2}^*) - \frac{1}{2} (\bar{\mathbf{G}}_{\text{Bi}_2\text{S}_3}^0 - \bar{\mathbf{G}}_{\text{Sb}_5\text{S}_3}^0) \quad (8)$$

In formulating the Gibbs energy of the β -Ag(Sb,Bi)S₂ phases (i.e. miargyrite, Ag₅Sb₅S₁₀; aramayoite, Ag₅Sb₄BiS₁₀; matildite, Ag₅Bi₅S₁₀), we assume that these phases display pronounced long-range ordering of Sb and Bi atoms between two non-equivalent

			Initia	Y	l			Final co	mosition	of miarc	write-ma	tilditec			
				1517			(wei	ight percei	ntages, st	andard de	viations(σ) and λ	(iBi)		
Label	Temp (°C)	Time (h)	BS	MM	# pts	Ag	б	, Sb	, b	Bi	б	S	ь	Total	X_{Bi}
04971-11	450	1584	0.1	0.0	5	33.42	0.30	39.04	0.11	6.08	0.21	21.73	0.21	100.3	0.083
04971-12	450	1584	0.1	0.1	S	33.13	0.35	38.56	0.69	6.39	0.20	21.56	0.16	99.64	0.088
04971-21	450	1584	0.2	0.0	S	32.65	0.53	33.76	0.26	11.96	0.30	21.58	0.19	99.94	0.171
04971-31	450	1584	0.3	0.1	5	31.30	0.47	30.26	0.28	15.77	0.26	20.28	0.29	97.61	0.233
04971-33	450	1584	0.3	0.3	5	31.91	0.27	29.88	0.34	16.56	0.46	20.66	0.20	10.66	0.244
04971-42	450	1584	0.4	0.3	5	30.97	0.37	26.27	0.33	23.02	0.30	20.59	0.58	100.9	0.338
04971-43	450	1584	0.4	0.4	5	30.85	0.40	24.91	0.24	24.55	0.33	20.54	0.14	100.9	0.365
04971-51	450	1584	0.5	0.3	7	28.00	1.39	21.68	0.24	28.61	0.23	20.20	0.10	98.49	0.435
04971-53	450	1584	0.5	0.5	1	29.48	ł	20.14	1	30.08	i	19.57	ł	99.27	0.465
02982-11	400	1512	0.1	0.0	-	36.11	١	38.82	1	4.70	I	21.38	I	101.1	0.066
02982-12	400	1512	0.1	0.1	1	35.38	١	36.97	ł	6.70	1	21.37	1	100.4	0.095
02982-21	400	1512	0.2	0.1	1	35.11	ł	33.37	1	13.12	I	21.08	Ţ	102.7	0.186
02982-23	400	1512	0.2	0.3	1	35.35	١	31.63	1	15.13	I	21.06	T	103.2	0.218
02983-11	350	1176	0.1	0.0		36.14	ł	39.31	1	1.99	I	21.90	ł	99.34	0.029
02983-13	350	1176	0.1	0.2	1	35.76	١	34.74	ł	6.81	ł	20.78	I	98.09	0.103
02983-21	350	1176	0.2	0.1	Ι	34.27	ł	31.97	1	12.72	I	20.71	ł	99.68	0.188
02983-23	350	1176	0.2	0.3	-	33.51	١	31.11	1	13.63	I	20.95	I	99.2	0.203
04974-23	300	3720	0.2	0.2	-	33.84	١	30.56	1	14.02	i	19.83	I	98.24	0.211
04974-24	300	3720	0.2	0.3	1	38.76	١	26.62	1	15.68	I	20.12	I	101.2	0.255
04974-32	300	3720	0.3	0.2	-	33.85	١	31.07	1	14.57	I	20.70	I	100.2	0.215
04974-33	300	3720	0.3	0.3	Ι	33.35	ł	26.70	1	19.43	I	20.42	I	<u>99.89</u>	0.249
04974-41	300	3720	0,4	0.2	1	33.90	١	30.61	1	14.19	I	20.76	I	99.46	0.213
04974-42	300	3720	0.4	0.3	-	35.16	١	29.42	1	16.02	1	20.86	1	101.5	0.241
04974-51	300	3720	0.5	0.3	1	33.80	١	26.30	١	21.65	Ι	20.24	I	102.0	0.324
04974-52	300	3720	0.5	0.4	-1	33.35	١	25.73	1	19.44	I	20.43	I	98.95	0.306
04974-62	300	3720	0.6	0.5		31.21	١	16.19	1	35.00	I	19.06	ł	101.5	0.558
04974-63	300	3720	0.6	0.6	1	30.49	١	15.06)	33.87	I	19.72	1	99.14	0.567
04974-72	300	3720	0.7	0.6	-	30.95	١	12.62	1	39.73	ł	18.79	I	102.1	0.647
04974-73	300	3720	0.7	0.7	1	30.08	ł	11.05	1	39.51	I	18.47	T	99.11	0.676
04974-82	300	3720	0.8	0.7		28.19	ł	8.61	1	41.71	T	17.45	I	95.96	0.738
04974-83	300	3720	0.8	0.8		29.81	}	7.64	1	43.32	I	17.60	1	98.36	0.768

TABLE 1. Results of exchange experiments between bismuthinite-stibnite and miargyrite-matildite at 300–450°C (Key: BS = bismuthinite-stibnite; MM = miargyrite-matildite)

BI-SB ENERGETICS IN SULFOSALTS AND SULFIDES

IABLE 2. I hermodynamic mixin $(Key: BS = bismuthinite-stibu)$	g parameters and energies of transitions and e nite; $\beta = \beta$ -Ag(Sb, Bi)S ₂ ; $\alpha = \alpha$ -Ag(Sb, Bi)S	xchange reactions in bismuthinite-stibuite and α	· and þ-Ag(Sb,Bi)S ₂ .
Name of solid solution	Parameter	Description	kJ/gfw
(Bi,Sb) ₂ S ₃ (bismuthinite-stibnite)	W ^{BS} W ^{BS}	Margules-type parameter describing non-ideality of Bi-Sb mixing	12.0±2.0
$lpha-Ag(Sb,Bi)S_2$	$W^{\alpha}_{B^{i},Sb}$	Margules-type parameter describing non-ideality of Bi-Sb mixing	6.0 ± 1.0
β-Ag(Sb,Bi)S ₂ Ordering reaction	$\Delta \hat{H}_s^0 \ ^\beta = \hat{H}_{a_s}^0 \ ^\beta S_{a_s} S_{b_s} B_{iS_{10}} + \frac{3}{5} \hat{H}_{a_s}^0 \ ^\beta S_{1s_s} S_{10}$ $\tilde{\pi}_0 \ B \qquad \tilde{\pi}_0 \ B$	Enthalpy of ordering reaction	-11.0 ± 1.0
<u>5</u> AgsBi ₅ S ₁₀ + AgsBi420510 = <u>5</u> AgsBi ₅ S ₁₀ + AgsSb4BiS ₁₀	$\begin{array}{l} -\Pi_{A\hat{g},B\hat{s}}_{i\hat{g},B\hat{s}}_{i\hat{s}}_{i\hat{s}}_{i\hat{s}}_{i\hat{s}} - \tilde{\xi}\Pi_{A\hat{g},S\hat{s},S\hat{s}_{i\hat{s}}}_{i\hat{s}}\\ \Delta \tilde{\xi}_{s}^{0} \ \beta = \tilde{\xi}_{A\hat{g},S\hat{s},B\hat{s},S\hat{s}_{i\hat{s}}} + \frac{3\tilde{\xi}_{0}}{\tilde{\xi}}\tilde{\xi}_{B\hat{s},S\hat{s}_{i\hat{s}}}_{i\hat{s},S\hat{s}_{i\hat{s}}}\\ = \tilde{\xi}_{0,B} \end{array}$	Entropy of ordering reaction	0.0
	$\begin{split} & - \overset{\rm C}{S}\overset{\rm Agg}{}_{\rm gg}{}_{\rm Bi,s}{}_{\rm So} \stackrel{\rm Z}{=} \overset{\rm Z}{}_{\rm S}\overset{\rm C}{}_{\rm So}{}_{\rm So$	Gibbs energy of ordering reaction	-11.0 ± 1.0
Reciprocal reaction AgsSb ₅ S ₁₀ + AgsBi ₅ S ₁₀ = AgsSh ₂ Si ₅ , + AgsBi ₅ Sh ₅₀	$\Delta \hat{\mathrm{H}}_{\mathrm{x}}^{0}$ $^{eta} = \hat{\mathrm{H}}_{\mathrm{A}_{\mathrm{S}}^{0}\mathrm{S}\mathrm{b}_{\mathrm{z}}}^{\ B}\mathrm{is}_{\mathrm{s}_{\mathrm{u}}} + \hat{\mathrm{H}}_{\mathrm{A}_{\mathrm{S}}^{0}\mathrm{S}\mathrm{B}\mathrm{i}_{\mathrm{z}}\mathrm{S}\mathrm{b}_{\mathrm{l}0}}^{\ D}$ $- \hat{\mathrm{H}}_{\mathrm{u}}^{0} \hat{\mathrm{B}}_{\mathrm{u}}, - \hat{\mathrm{H}}_{\mathrm{u}}^{0} \hat{\mathrm{B}}_{\mathrm{u}}, -$	Enthalpy of reciprocal reaction	0.0
	$\Delta \tilde{\mathbf{S}}_{\mathbf{X}}^{0} \ \boldsymbol{\beta} = \tilde{\mathbf{S}}_{\mathbf{A}}^{0} \begin{array}{c} \boldsymbol{\beta} \\ \boldsymbol{\beta} = \tilde{\mathbf{S}}_{\mathbf{A}}^{0} \begin{array}{c} \boldsymbol{\beta} \\ \boldsymbol{\beta} \\ \boldsymbol{\beta} \\ \boldsymbol{\beta} \end{array} \right) + \tilde{\mathbf{S}}_{\mathbf{A}}^{0} \begin{array}{c} \boldsymbol{\beta} \\ \boldsymbol{\beta} $	Entropy of reciprocal reaction	0.0
	$\begin{split} &-S^{4}_{\text{B}\text{S}} S_{\text{B}\text{S}} S_{\text{I}0} - S^{V}_{\text{B}\text{S}} B_{\text{I}} S_{\text{I}0} \\ &\Delta \tilde{G}^{0}_{\text{S}} \ \beta = \Delta \tilde{H}^{0}_{\text{S}} \ \beta - T \Delta \tilde{S}^{0}_{\text{S}} \ \beta \end{split}$	Gibbs energy of reciprocal reaction	0.0

S. GHOSAL AND R. O. SACK

	$W_{Bl-Sb}^{I\beta}$	Margules-type parameter describing non-ideality of Bi-Sb mixing on site I	34.0 ± 4.0
	W ^{II} B Bi:Sb	Margules-type parameter describing non-ideality of Bi-Sb mixing on site II	8.5 ± 1.0
β→α	$\Delta {ar H}_{AgSuS_2}^{0\ eta - arkappa}$	Enthalpy of transition for Sb-end-member	7.53
	$\Delta ar{S}^0 egin{array}{c} eta \to lpha \ Aggs b S_2 \end{array}$	Entropy of transition for Sb-end-member	0.0115
	$\Delta { ilde H}^0_{AgBiS_2}$	Enthalpy of transition for Bi-end-member	5.34
	$\Delta \bar{S}^{0}_{A\bar{g}BIS_2}^{p\to \alpha}$	Entropy of transition for Bi-end-member	0.0115
Energies of exchange reaction	$\Delta \tilde{G}_{BiSb}^{0~BS-\alpha}$	Energy of exchange reaction between bismuthinite-stibuite and α -AgSbS ₂ (Equation 8)	2.70 ± 0.10
	$\Delta \bar{G}_{Bi-Sb}^0 B_{S-\beta}$	Energy of exchange reaction between bismuthinite-stibnite and β-AgSbS ₂ (Equation 14)	4.89 ± 0.10

TABLE 2. (contd.)

BI-SB ENERGETICS IN SULFOSALTS AND SULFIDES

semi-metal sites (I and II) which occur in a ratio of multiplicities of 4:1. A formula unit based on 10 S atoms is chosen for the β -Ag(Sb,Bi)S₂ solid solution to simplify the formulation of the model for the Gibbs energy, and, the species Ag₅(Sb)^I₄(Bi)^{II}S₁₀ represents a fully ordered 'aramayoite' component that is stable at low temperatures. Molar compositional and ordering variables may be defined as

 $X_{Bi}^{\beta} = Bi/(Bi + Sb)$

and

$$s^{\beta} = \chi^{II}_{\mathrm{Pi}}{}^{\beta} - \chi^{I}_{\mathrm{Pi}}{}^{\beta} \tag{9}$$

The vibrational component of the Gibbs energy of β -Ag(Sb,Bi)S₂ solid solutions can be adequately expressed as a second-order Taylor's expansion in these compositional and ordering variables:

$$\bar{\mathbf{G}}^{*\beta} = g_o + g_x(X^{\beta}_{\mathrm{Bi}}) + g_s(s^{\beta}) + g_{xx}(X^{\beta}_{\mathrm{Bi}})^2 + g_{ss}(s^{\beta})^2 + g_{xs}(X^{\beta}_{\mathrm{Bi}})(s^{\beta}), \quad (10)$$

Following procedures outlined elsewhere (e.g. Sack, 1992) the coefficients in equation 10 may be ready related to end-member energies $(\bar{G}^{0}_{Ag,Sb_{S}b_{S}}, \bar{G}^{0}_{Ag,Bi_{S}b_{S}}, \bar{G}^{0}_{Ag,Bi_{S}$

$$\begin{split} \bar{\mathbf{G}}^{*\beta} &= \bar{\mathbf{G}}_{Ag_{s}Sb_{5}S_{10}}^{0}(1-X_{Bi}^{\beta}) + \bar{\mathbf{G}}_{Ag_{s}Bi_{5}S_{10}}^{0}X_{Bi}^{\beta} + \\ & (\Delta \bar{\mathbf{G}}_{x}^{0\ \beta} + \mathbf{W}_{Bi-Sb}^{1\ \beta} + \mathbf{W}_{Bi-Sb}^{1\ \beta})(X_{Bi}^{\beta})(1-X_{Bi}^{\beta}) + \\ & (\frac{3}{10}\Delta \bar{\mathbf{G}}_{x}^{0\ \beta} + \frac{1}{2}\Delta \bar{\mathbf{G}}_{s}^{0\ \beta} - \frac{1}{5}\mathbf{W}_{Bi-Sb}^{1\ \beta} + \frac{4}{5}\mathbf{W}_{Bi-Sb}^{1\ \beta})(s^{\beta}) + \\ & (\frac{4}{25}\Delta \bar{\mathbf{G}}_{x}^{0\ \beta} - \frac{1}{25}\mathbf{W}_{Bi-Sb}^{1\ \beta} - \frac{16}{25}\mathbf{W}_{Bi-Sb}^{1\ \beta})(s^{\beta})^{2} + \\ & (-\frac{3}{2}\Delta \bar{\mathbf{G}}_{x}^{0\ \beta} + \frac{2}{5}\mathbf{W}_{Bi-Sb}^{1\ \beta} - \frac{8}{5}\mathbf{W}_{Bi-Sb}^{1\ \beta})(X_{Bi}^{\beta})(s^{\beta}) \quad (11) \end{split}$$

For the molar configurational entropy of the β -Ag(Sb,Bi)S₂ solid solution we may write the following formulation based on the assumption that Sb and Bi display long-range nonconvergent ordering between sites I and II (e.g. Harlov and Sack, 1994).

$$\begin{split} \bar{\mathbf{S}}^{\text{IC}\ \beta} &= -\mathbf{R}[4(1 - X_{\text{B}i}^{\beta} + \frac{1}{5}s^{\beta})\ln(1 - X_{\text{B}i}^{\beta} + \frac{1}{5}s^{\beta}) + \\ &\quad 4(X_{\text{B}i}^{\beta} - \frac{1}{5}s^{\beta})\ln(X_{\text{B}i}^{\beta} - \frac{1}{5}s^{\beta}) + \\ &\quad (1 - X_{\text{B}i}^{\beta} - \frac{4}{5}s^{\beta})\ln(1 - X_{\text{B}i}^{\beta} - \frac{4}{5}s^{\beta}) + \\ &\quad (X_{\text{B}i}^{\beta} + \frac{4}{5}s^{\beta})\ln(X_{\text{B}i}^{\beta} + \frac{4}{5}s^{\beta}) \end{split}$$
(12)

The Sb-Bi exchange reaction between bismuthinite-stibnite and the β -Ag(Sb,Bi)S₂ solid solution

$$Bi_{2}S_{3} + \frac{1}{5}Ag_{5}Sb_{5}S_{10} = \frac{1}{5}Ag_{5}Bi_{5}S_{10} + \frac{1}{2}Sb_{2}S_{3}$$
(13)

can thus be described as

$$\operatorname{RT} \ln \left[\left\{ \frac{(1 - X_{\text{Bi}}^{\beta} + \frac{1}{3} s^{\beta})^{4} (1 - X_{\text{Bi}}^{\beta} - \frac{4}{3} s^{\beta})}{(X_{\text{Bi}}^{\beta} - \frac{1}{3} s^{\beta})^{4} (X_{\text{Bi}}^{\beta} + \frac{4}{3} s^{\beta})} \right\}^{1/5} \frac{X_{\text{Bi}}^{\text{BS}}}{(1 - X_{\text{Bi}}^{\text{BS}})} \right] - \Delta \bar{G}_{\text{BiSb}}^{0} \stackrel{\text{BS}-\beta}{1} + \frac{1}{2} W_{\text{Bi-Sb}}^{\text{BS}} (1 - 2X_{\text{Bi}}^{\text{BS}}) = \frac{1}{5} (\Delta \bar{G}_{x}^{0} \stackrel{\beta}{} + W_{\text{Bi-Sb}}^{1} + W_{\text{Bi-Sb}}^{1} (1 - 2X_{\text{Bi}}^{\beta}) + \frac{1}{25} (-3\Delta \bar{G}_{x}^{0} \stackrel{\beta}{} + 2W_{\text{Bi-Sb}}^{1} - 8W_{\text{Bi-Sb}}^{11}) (1 - 2X_{\text{Bi}}^{\beta}) + \frac{1}{25} (-3\Delta \bar{G}_{x}^{0} \stackrel{\beta}{} + 2W_{\text{Bi-Sb}}^{1} - 8W_{\text{Bi-Sb}}^{11}) (s^{\beta})$$
(14)

where

$$\begin{split} \Delta \tilde{\mathbf{G}}_{\text{BiSb}}^{0 \text{ BS-}\beta} &= \frac{1}{5} (\tilde{\mathbf{G}}_{\text{Ag}_{s}\text{Bi}_{s}\text{S}_{10}}^{0} - \tilde{\mathbf{G}}_{\text{Ag}_{s}\text{S}\text{B}_{s}\text{S}_{10}}^{0}) - \\ & \frac{1}{2} (\tilde{\mathbf{G}}_{\text{Ag}_{s}\text{S}\text{b}_{s}\text{S}_{10}}^{0} - \tilde{\mathbf{G}}_{\text{Sb}_{2}\text{S}_{3}}^{0}) = \\ & \Delta \tilde{\mathbf{G}}_{\text{BiSb}}^{0 \text{ BS-}\alpha} + \Delta \tilde{\mathbf{G}}_{\text{Ag}\text{Sb}_{2}}^{0 \beta \rightarrow \alpha} - \Delta \tilde{\mathbf{G}}_{\text{Ag}\text{BiS}_{2}}^{0 \beta \rightarrow \alpha} \quad (15) \end{split}$$

The value of s^{β} for a given X_{Bi}^{β} and T can be determined by applying the condition of homogeneous equilibrium to the Gibbs energy of the solid solution

$$(\partial \bar{\mathbf{G}}/\partial s^{\beta}) = 0 \tag{16}$$

which gives us the equation

$$\operatorname{RT} \ln \left[\frac{(X_{\mathrm{Bi}}^{\beta} - \frac{1}{5}g^{\beta})(1 - X_{\mathrm{Bi}}^{\beta} - \frac{4}{5}g^{\beta})}{(1 - X_{\mathrm{Bi}}^{\beta} + \frac{1}{5}g^{\beta})(X_{\mathrm{Bi}}^{\beta} + \frac{4}{5}g^{\beta})} \right] = \\ \left(\frac{3}{5} \Delta \bar{G}_{x}^{0} \beta + \frac{5}{5} \Delta \bar{G}_{x}^{0} \beta - \frac{1}{4} W_{\mathrm{Bi-Sb}}^{I} + W_{\mathrm{Bi-Sb}}^{\mathrm{II}} + W_{\mathrm{Bi-Sb}}^{\mathrm{II}} \right) + \\ \left(\frac{3}{5} \Delta \bar{G}_{x}^{0} \beta - \frac{1}{10} W_{\mathrm{Bi-Sb}}^{I} - \frac{5}{5} W_{\mathrm{Bi-Sb}}^{\mathrm{II}} \right) (s^{\beta}) + \\ \left(-\frac{3}{4} \Delta \bar{G}_{x}^{0} \beta + \frac{1}{2} W_{\mathrm{Bi-Sb}}^{I} - 2 W_{\mathrm{Bi-Sb}}^{\mathrm{II}} \right) (X_{\mathrm{Bi}}^{\beta})$$
(17)

Finally, the condition of equilibrium for the Sb-Bi exchange reaction between the α - and β -Ag(Sb,Bi)S₂ solid solutions,

$$AgBiS_{2} + \frac{1}{5}Ag_{5}Sb_{5}S_{10} = \frac{1}{5}Ag_{5}Bi_{5}S_{10} + AgSbS_{2}$$
(18)

may be derived by subtracting equation 7 from 14.

$$\operatorname{RT} \operatorname{In} \left[\left\{ \frac{(1 - X_{B_{i}}^{\beta} + \frac{1}{3} s^{\beta})^{4} (1 - X_{B_{i}}^{\beta} - \frac{4}{3} s^{\beta})}{(X_{B_{i}}^{\beta} + \frac{1}{3} s^{\beta})^{4} (X_{B_{i}}^{\beta} + \frac{4}{3} s^{\beta})} \right\}^{1/5} \frac{X_{B_{i}}^{\alpha}}{(1 - X_{B_{i}}^{\alpha})} \right] + \Delta \tilde{G}_{AgBiS_{2}}^{0} - \Delta \tilde{G}_{AgBiS_{2}}^{0} + W_{Bi-Sb}^{\alpha} (1 - 2X_{B_{i}}^{\alpha}) = \frac{1}{5} (\Delta \tilde{G}_{x}^{0} \ ^{\beta} + W_{Bi-Sb}^{1} + W_{Bi-Sb}^{B}) (1 - 2X_{B_{i}}^{\beta}) + \frac{1}{25} (-3\Delta \tilde{G}_{x}^{0} \ ^{\beta} + 2W_{Bi-Sb}^{1} - 8W_{Bi-Sb}^{II,\beta}) (s^{\beta})$$
(19)

Calibration of thermodynamic models

In conjunction with constraints on the transition temperatures between the α - and β -Ag(Sb,Bi)S₂ solutions, and bounds on the width of their two-

phase loop, we may develop a calibration for the parameters describing Sb-Bi mixing in bismuthinite-stibuite and α - and β -Ag(Sb,Bi)S₂ based on analysis of our brackets on Sb-Bi partitioning. The parameters are tightly bound, if it is assumed that the standard state Gibbs energies of the Sb-Bi exchange reactions (Eqns 8, 15) are independent of temperature (e.g. Sack and Ghiorso, 1989; Harlov and Sack, 1994). As a first approximation, we may also assume that the entropy of the ordering reaction $(\Delta \bar{S}_s^0 \beta)$, and the enthalpy and entropy of the reciprocal reaction $(\Delta \bar{H}_x^{0\beta}, \Delta \bar{S}_x^{0\beta})$, for the β -Ag(Sb,Bi)S₂ solid solution are zero (Table 2). Finally, we may assume that the entropy changes of the $\beta \rightarrow \alpha$ transitions are entirely due to the configurational effect of the complete disordering of Ag, Sb and Bi between the metal and semi-metal sites that are distinct in the lowtemperature ordered (β) structure (e.g. Graham, 1951). For this assumption, the entropies of the $\beta \rightarrow \alpha$ transitions in the AgSbS₂ and AgBiS₂ endmembers $(\Delta \bar{S}^{0}_{AgSbS_{2}}, \Delta \bar{S}^{0}_{AgBiS_{2}})$ are 2Rln2 per formula unit, and values of $\Delta \bar{H}^{0} \xrightarrow{\beta \to \alpha}$ for these transitions (determined from the relation $\Delta \bar{H}^{0 \beta \rightarrow \alpha} =$ $T \Delta \bar{S}^{0 \beta \to \alpha}$; $T \approx 380^{\circ}$ C for AgSbS₂; 190°C for $AgBiS_2$) are consistent with the calorimetric determinations of Bryndzia and Kleppa (1989). With these assumptions and the requirement that $W_{Bi-Sb}^{BS} \leq 14.0 \text{ kJ/gfw}$ (bismuthinite-stibnites exhibit continuous solid solubility at temperatures $\geq 200^{\circ}$ C; Springer and Laflamme, 1971), we may readily develop a calibration for the condition of equilibrium of the Sb-Bi exchange reaction between bismuthinite-stibuite and the α -Ag(Sb,Bi)S₂ solid solution (Equation 7) that satisfies our brackets on Sb-Bi partitioning between these phases at $300-450^{\circ}$ C (Fig. 2), provided $W_{Bi-Sb}^{BS} \approx W_{Bi-Sb}^{\alpha}$ $\Delta \bar{G}_{Bi-Sb}^{0 BS-\alpha} \approx 2.6-3.2$ kJ/gfw.

Examination of the conditions of Bi-Sb exchange equilibrium between bismuthinite-stibnite and β -Ag(Sb,Bi)S₂ (Equation 14), and between coexisting α - and β -Ag(Sb,Bi)S₂ (Equation 18), allows the value of W_{Bi-Sb}^{Bi} to be refined, and values of W_{Bi-Sb}^{Bi} (assumed to be equal to 4W) and $\Delta \bar{H}_{s}^{0\ \beta}$ to be determined (Table 2). The strong composition dependence on the apparent Gibbs energy of the Sb-Bi exchange reaction between bismuthinite-stibuite and β -Ag(Sb,Bi)S₂ can only be satisfied if $\frac{1}{4}W_{Bi-Sb}^{1\ \beta}$ (= $W_{Bi-Sb}^{II\ \beta}$) is greater than $\frac{1}{2}W_{Bi-Sb}^{Bi}$ by at least 2 kJ/gfw, and if the standard state Gibbs energy of the reaction

$$\frac{\frac{3}{5}Ag_5Sb_5S_{10} + Ag_5(Bi)_4^{I}(Sb)^{II}S_{10} = \\ \frac{\frac{3}{5}Ag_5Bi_5S_{10} + Ag_5(Sb)_4^{I}(Bi)^{II}S_{10}}{2}$$

is strongly negative (i.e. $\Delta \bar{H}_s^{0~\beta} < -10 \text{ kJ/gfw}$). Values of $W_{Bi,Sb}^{BS} > 14.0 \text{ kJ/gfw}$ require values of ${}_{4}^{1}W_{Bi-Sb}^{I\beta}$ and $W_{Bi-Sb}^{II\beta}$ (>9.5 kJ/gfw) that are also unrealistically large, predicting miscibility gaps between miargyrite and aramayoite, and between aramayoite and matildite too extensive to satisfy experimental and natural constraints, respectively. For example, values of $W_{Bi-Sb}^{II} > 9.5 \text{ kJ/gfw}$ require miscibility gaps to appear at $T > 300^{\circ}$ C $(X_{\rm Bi} \approx 0.10)$, but in our experiments, Ag(Sb,Bi)S₂ grains of this composition were stable to annealing for 4 months at 300°C. Equivalent values for $\frac{1}{4}W_{Bi-Sb}^{I\beta}$ require miscibility gaps between aramayoite and matildite too extensive to accommodate the natural aramayoite composition reported by Borodayev et al. (1986; $X_{\rm Bi} \approx 0.35$; Fig. 3).

At the opposite extreme, the assumption of ideal mixing in bismuthinite-stibnite $(W_{Bi-Sb}^{BS} = 0.0)$, values of $\frac{1}{4}W_{Bi-Sb}^{I\beta}$ and $W_{Bi-Sb}^{II\beta}$ of at least 6.0 kJ/gfw are required. Calibrations predicted on this assumption may be considered problematic because of the large implied difference in non-ideality of Sb-Bi substitution in solutions with similar structures. We therefore adopt the calibration for parameters given in Table 2 for a value of W_{Bi-Sb}^{BS} of 12.0 + 2.0 kJ/gfw, to achieve maximal correspondence between the models and experimental data, as well as be consistent with the premise that the energetic consequences of Sb-Bi substitution should not be grossly different in materials with similar structures. The calibrated parameters are used in constructing a phase diagram for the AgSbS₂-AgBiS₂ binary subsystem (Fig. 3), and the resulting calculated miscibility gaps between the β -Ag(Sb,Bi)S₂ sulfosalts, miargyrite, aramayoite and matildite, are consistent with phase assemblages and compositions observed in nature.

Conclusions

Antimony-bismuth mixing in sulfides and argentian sulfosalts is significantly non-ideal, in accordance with similar non-idealities exhibited by their As-Sb counterparts (Ghosal and Sack, 1995). Bismuthinite-stibnites ($W_{Bi-Sb}^{BS} \approx 12.0 \text{ kJ/}$ gfw) are predicted to exsolve at temperatures $\leq 88^{\circ}$ C, consistent with their exhibiting continuous solid solution in hydrothermal ore deposits ($T \approx 150-350^{\circ}$ C), but exhibiting preponderances in molar ratios towards the end-members (Lueth, 1988; Fig. 1). The non-idealities in disordered Sb-Bi sulfides and sulfosalts are found to be less than that of their As-Sb counterparts, with the exception of ordered compounds (Table 2; Ghosal and Sack, 1995), and this can be attributed to the lesser relative size difference between Sb and Bi atoms, causing smaller strain effects.

Acknowledgements

We gratefully acknowledge support provided by NSF grant EAR-96-27479 (ROS), technical assistance provided by C. Hager, and the constructive comments of an anonymous reviewer.

References

- Bartos, P.J. (1990) Metal ratios of the Quirivilca mining district, northern Peru. Econ. Geol., 85, 1629–44.
- Boldyreva, M.M. (1970) Matildite, β-AgBiS₂, from the Tary Ekan deposit, Eastern Karamazar. *Dok. Akad. Nauk SSSR*, **194**, 122–4.
- Borodayev, Y.S., Nenasheva, S.N., Gamyanin, G.N. and Mozgova, N.N. (1986) First find of aramayoitegalena-matildite exsolution textures. *Dokl. Akad. Nauk SSSR*, 290, 192–5.
- Brooker, M. and Jaireth, S. (1995) Mount Rawdon, southeast Queensland, Australia - A diatreme-hosted gold-silver deposit. *Econ. Geol.*, **90**, 1799–817.
- Bryndzia, L.T. and Kleppa, O.J. (1989) Standard molar enthalpies of formation of sulfosalts in the Ag-As-S system and thermochemistry of the sulfosalts of Ag with As, Sb, and Bi. *Amer. Mineral.*, 74, 243–9.
- Bussell, M.A., Alpers, C.N., Petersen, U., Shepherd, T.J., Bermudez, C. and Baxter, A.N. (1990) The Ag-Mn-Pb-Zn vein, replacement, and skarn deposits of Uchucchacua, Peru: Studies of structure, mineralogy, metal zoning, Sr isotopes, and fluid inclusions. *Econ. Geol.*, **85**, 1348–83.
- Chang, L.L.Y., Knowles, C.R. and Chen, T.T. (1977) Phase relations in the systems Ag₂S-Sb₂S₃-Bi₂S₃, Ag₂S-As₂S₃-Sb₂S₃ and Ag₂S-As₂S₃-Bi₂S₃. *Mem. Geol. Soc. China*, **2**, 229–37.
- Czamanske, G.K. and Hall, W.E. (1975) The Ag-Bi-Pb-Sb-S-Se-Te mineralogy of the Darwin lead-silverzinc deposit, southern California. *Econ. Geol.*, 70, 1092–110.
- Ghosal, S. and Sack, R.O. (1995) As-Sb energetics in argentian sulfosalts. *Geochim. Cosmochim. Acta*, 59, 3573-9.
- Gibson, P.C., Noble, D.C. and Larson, L.T. (1990) Multistage evolution of the caldera epithermal Ag-Au vein system, Orcopampa district, southern Peru: first results. *Econ. Geol.*, **85**, 1504–19.
- Gilmer, A.L., Clark, K.F., Conde, C.J., Hernandez, I.C.,

Figueroa, J.I.S. and Porter, E.W. (1988) Sierra de Santa Maria, Velardeña mining dirtrcit, Durango, Mexico. *Econ. Geol.*, **83**, 1802–29.

- Goodell, P.C. (1974) A typical sulfosalt environment: The mineralogy of the Julcani district, Peru. *Mineral. Mag.*, 38, 215–21.
- Goodell, P.C. and Petersen, U. (1974) Julcani mining district, Peru: A study of metal ratios. *Econ. Geol.*, 69, 347–61.
- Graham, A.R. (1951) Matildite, aramayoite, miargyrite. Amer. Mineral., **36**, 436–49.
- Gröpper, H., Calvo, M., Crespo, H., Bisso, C.R., Cuadra, W.A., Dunkerley, P.M. and Aguirre, E. (1991) The epithermal gold-silver deposit of Choquelimpie, northern Chile. *Econ. Geol.*, **86**, 1206–21.
- Harlov, D.E. and Sack, R.O. (1994) Thermochemistry of polybasite-pearceite solid solutions. *Geochim. Cosmochim. Acta*, 58, 4363–75.
- Hayase, K. (1955) Minerals of bismuthinite-stibnite series with special reference to horobetsuite from the horobetsu mine, Hokkaido, Japan. *Mineral. J.*, 1, 189–97.
- Jeppson, M. (1987) Mineral chemistry of silver in antimony and bismuth rich sulfide ores in Bergslagen, central Sweden. *Neues Jahrb. Mineral. Mon.*, 5, 205-6.
- Johnson, T.W. and Meinert, L.D. (1994) Au-Cu-Ag skarn and replacement mineralization in the McLaren deposit, New World district, Park County, Montana. *Econ. Geol.*, **89**, 969–93.
- Keighin, C.W. and Honea, R.M. (1969) The system Ag-Sb-S from 600°C to 200°C. *Mineral. Deposita*, 4, 153–71.
- Kelly, W.C. and Turneaure, F.S. (1970) Mineralogy, paragenesis and geothermometry of the tin and tungsten deposits of the Eastern Andes, Bolivia. *Econ. Geol.*, **65**, 609–80.
- Klein, C. and Hurlburt, Jr., C.S. (1971) Manual of Mineralogy (after James D. Dana). 20th Edition, John Wiley & Sons, New York.
- Knowles, C.R. (1964) A redetermination of the structure of miargyrite, AgSbS₂. Acta Crystallogr., 17, 847-51.
- Lueth, V.W. (1988) Studies of the geochemistry of the semimetal elements: arsenic, antimony, and bismuth. Unpublished Ph.D. thesis, University of Texas at El Paso.
- Lueth, V.W., Goodell, P.C. and Pingitore, N.E., Jr. (1990) Encoding the evolution of an ore system in bismuthinite-stibnite compositions: Julcani, Peru. *Econ. Geol.*, 85, 1462–72.
- Mullen, D.J.E. and Nowacki, W. (1974) The crystal structure of aramayoite Ag(Sb,Bi)S₂. Zeits. Krist., 139, 54–69.
- Petersen, U., Noble, D.C., Arenas, M.J. and Goodell, P.C. (1977) Geology of the Julcani mining district,

Peru. Econ. Geol., 72, 931-49.

- Petruk, W. (1968) Mineralogy and origin of the Silversfield silver deposit in the Cobalt area, Ontario. *Econ. Geol.*, 63, 512-31.
- Ruvalcaba-Ruiz, D.C. and Thompson, T.B. (1988) Ore deposits at the Fresnillo mine, Zacatecas, Mexico. *Econ. Geol.*, 83, 1583–96.
- Sack, R.O. (1992) Thermochemistry of tetrahedritetennantite fahlores. In *The Stability of Minerals* (N.L. Ross and G.D. Price, eds), Chapman & Hall, London, pp. 243–66.
- Sack, R.O. and Ghiorso, M.S. (1989) Importance of considerations of mixing properties in establishing an internally consistent thermodynamic database: thermochemistry of minerals in the system Mg₂SiO₄-Fe₂SiO₄-SiO₂. *Contrib. Mineral. Petrol.*, **102**, 41–68.

- Sillitoe, R.H., Halls, C. and Grant, J.N. (1975) Porphyry tin deposits in Bolivia. *Econ. Geol.*, **70**, 913–27.
- Springer, G. (1969) Naturally occurring compositions in the solid-solution series Bi₂S₃-Sb₂S₃. *Mineral. Mag.*, 37, 294-6.
- Springer, G. and Laflamme, J.H.G. (1971) The system Bi₂S₃-Sb₂S₃. *Canad. Mineral.*, **10**, 847–53.
- Van Hook, H.J. (1960) The ternary system Ag₂S-Bi₂S₃-PbS. *Econ. Geol.*, **55**, 759–88.
- Stone, J.G. (1959) Ore genesis in the Naica district, Chihuahua, Mexico. *Econ. Geol.*, 54, 1002–34.
- Turneaure, F.S. (1971) The Bolivian tin-silver province. Econ. Geol., 66, 215-25.

[Manuscript received 20 October 1998: revised 2 January 1999]