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Fe-Li micas: a new approach to the substitution series 
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A B S T R A C T  

Over the last 50 years many definitions of element substitution series have been proposed for 
describing natural Fe-Li micas with complex chemical compositions. In order to compare these 
definitions and ascertain their reliability, a new geometric frame composed of ideal mica points, mica 
joins (segments), substitution vectors and substitution planes is constructed to express the entire 
substitution system of ideal Fe-A1-Li micas. The frame is built in composition space with the 
coordinate system (0; Si, Alvb Abv, Fe 2+, Li, [[]vi, K), but has a 3-dimensional analogue, i.e. a visual 
image. 

Using this frame, it has been proved that there are only five possible types of replacement for 
definitions of Fe-Li micas, and that all possible types have been suggested except the Aliv-constant. 
Furthermore, it has been proved that the main point in different definitions is that the replacement of Li 
by Fe 2+ needs to be balanced with Alw, Alvi, or Ulvi. In order to solve this problem, a set of formulae 
determining spatial relations between geometric elements in the frame is suggested. With these 
formulae, the abstract frame is suggested to be a datum system used to ascertain quantitatively the 
reliability of definition of natural Fe-Li micas. 

KEYWORDS: Fe-Li micas, substitution series, substitution vector, substitution plane. 

Introduction 

FE-LI micas are the typomorphic minerals of rare- 
metal granite, pegmatite, greisen etc. Rieder et al. 
(1999) calls the Fe-Li micas the 'zinnwaldite 
series'. Over the last 50 years, many authors have 
tried to define the Fe-Li mica series, and to clarify 
essential replacements within the series. None of 
the other mica series present so great a challenge 
as the Fe-Li mica series does in terms of 
interpretation of its crystallochemistry. We 
attempt to differentiate various 'Fe-Li mica 
series' and to lay a foundation for determining 
reliable relationships in terms of replacements, 
among natural Fe-A1-Li micas. For these 
purposes, a new geometric frame of Fe-A1-Li 
micas is constructed. The frame has two forms 
related to each other: one is abstract in space, with 
coordinate systems (0; Si, Alvl, Alw, Fe 2+, Li, 
Dw, K) and the other is visual (Fig. la). To 
define a trustworthy replacement for the Fe-Li 
mica series is beyond the means of this paper, for 

it is necessary to determine the variation trend of 
natural Fe-Li micas (cf. Sun and Yu, in prep.). 

Review 

Fe-Li micas have been variously called the 
'protolithionite-lepidolite series' (Winchell, 
1927), the 'biotite-lepidolite series' (Ginzburg 
and Berkhin, 1953; Lapides et al., 1977; Sun, 
1988) and the 'siderophyllite-polylithionite series' 
(Foster, 1960a; Rieder, 1970; Stone et al., 1988) 
with different replacements. 

Ginzburg and Berkhin (1953) considered that 
the transition from biotite (having A1 contents 
between 15 and 25% and R 2+ between 85 and 
75% in its octahedral sheet) to lepidolite was due 
to replacement (1): 

2Mg =Li +Alw (1) 

Foster (1960a, Fig. 37) described Fe-Li micas 
in her triangle with apices Li, R2+vb and 
(R3++Ti)vi as a band trending diagonally from 
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the area occupied by siderophyllite and aluminian 
lepidomelane towards the point representing 
polylithionite.  She explained the band with 
equation (2). Since the ideal end-member is 
polylithionite (Pol, No. 2 in Table 1), ideal 
siderophyllite as a starting member of  her series 
is formula  (3) (Sid0, N o . l l  in Table  1). 
Siderophyllite is also the Fe2+-highest member  
of  the Mg-Fe mica series (Foster, 1960b). 

4nLi + 2nSi = 3nFe 2+ + 2nAliv (2) 
K2AlzFe2+[-] vl Si6A12020(OH)4 (3) 

Rieder  (1970)  and  Stone e t  al .  (1988)  
interpreted Fe-Li micas as generalized formulae 
(4) and (5) (0 ~<X~<4), respectively. According to 

their interpretations, Fe-Li micas are a solid- 
solution series from formula (6) (when X = 4 in 
formula (4) or No. 4 in Table 1) to Pol (when 
X = 0), which is caused by equation (7): 

2+ �9 3+ �9 KzFex LI4_x(A1, Fe )2AlxS18_xO20(OH,F)4 (4) 
2+ �9 3+ " 

K 2 R~ L14 x R2  A l x  S l s  x O 2 0 ( O H ,  F ) 4  ( 5 )  
2+ �9 KzAIzFe4 S14A14Oz0(OH)4 (6) 

Fe z+ + Alw --* Li + Si (7) 

Formula (6) is the end-member mineral called 
siderophyllite (e.g. Rieder et  al.,  1999). Starting 
from annite, K2Fe6Si 6 A1202o (OH)4, formula (6) 
and Sid4 (No. 15 in Table 1) are formed by Fe- 
Tschermak exchange, 2Si + 2Fe 2+ ~ 2Alxv + 
2Alvi, whereas varieties of siderophyllite Sid0 

TABLE 1. Definitions of  ideal Fe-A1-Li micas used in this paper 

No. Ideal mineral Abbreviation Structural formula Note 
K Alvi Fe z+ Li D v i  Si Aliv 

End-member minerals 
1 Annite Ann, A 2 6 6 2 
2 Polylithionite Pol, P 2 2 4 8 
3 Trilithionite Tri, T 2 3 3 6 2 
4 Siderophyllite* Fe-Eas, E 2 2 4 4 4 
5 Muscovite Mus, M 2 4 2 6 2 
6 Aluminoceladonite A1-Cel 2 2 2 2 8 

Other ideal minerals 
7 Zinnwaldite Zin, Z 2 2 2 2 6 2 

(Betehtin, 1950) 
8 Protolithionite Pro 2 1 4 1 6 2 

(Winchell, 1942) 
9 Varieties of Prol, Prl 2 2 5/2 1 1/2 6 2 

protolithionite 
10 Al-lepidolite t A1-Lep 2 3 2 1 7 1 

Lapides et al. (1977) 
11 Varieties of Sido 2 2 3 1 6 2 
12 siderophyllite Sidl 2 4/3 4 2/3 6 2 
13 Sid2 2 4/9 16/3 2/9 6 2 
14 Sid3 2 2 10/3 2/3 16/3 8/3 

15 Sid4 2 2/3 16/3 16/3 8/3 
16 A1 2 3/2 4 1/2 11/2 5/2 
17 E1 2 5/3 23/6 1/2 16/3 8/3 
18 Varieties of P1 2 17/6 16/6 1/2 41/6 7/6 

lepidolite 
19 T1 2 21/8 23/8 1/2 29/4 3/4 

Zin -Ann+2AT/3 
=Fe-Eas+ZP 

Pro=Ann+AT/3 
=Sid4+ET/3 

Pro 1 =Pro+AM/4 
=Sido+SZ/2 

A1-Lep 
= Mus+MP/2 

Sido = Ann+AM/2 
Sidl=Ann+AM/3 
Sid2=Ann+AM/9 
Sid3=Sid0-ES/3 

=Sid4+AM/3 
Sid4=Ann+AE/3 
A I = S i d l - E S J 4  
EI=AI+AE/12 
P I=AI+2AP/3 = 
Tri+5TP/12+MT/4 
Tl=El+23ET/24 

= Pl+5TP/24 

* In order to differentiate from varieties of siderophyllite from No. 11 to 17, the abbreviation of the end-mineral 
siderophyllite (No. 4) is written as Fe-Eas or E, i.e. the abbreviation of Fe-analogue of eastonite. 
t Foster (1960a) considered the micas having Li-occupancy of-0 .95-1 .05 and octahedral occupancy of~2.50-2.60 
in half-cell formula as mixed forms. 
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FIG. 1. A visual geometric frame for ideal Fe-A1-Li micas. (a) The geometric frame is composed of points, segments, 
vectors and planes, which express ideal mica points, mica joins, substitution vectors and substitution planes, 
respectively. Points Ann, Pol, Tri, Fe-Eas, Mus, Zin, Pro, Pro1, A1-Lep, Sid0, Sidl, Side, Sid3, Sid4, A1, P1, E1 and 
T1 represent ideal Fe-A1-Li micas (Table 1). Segments linking pairs of ideal mica points, SP, PrlP, ZP, AP, ET, MP, 
TP, MP-2MT, ESI, ES, AE, EM, AT, AM, MT, SZ and MZ, represent both mica joins and substitution vectors 
without arrow (Table 2). Quadrilaterals APTE (Ann-Pol-Tri-Fe-Eas) and APTEo.5 (A1-T1-P1-E1) and triangles 
A/VIE (Ann-Mus-Fe-Eas), PMT (Pol-Mus-Tri), ATM (Ann-Tri-Mus) and PSE (Pol-Sido-Fe-Eas) are substitution 
planes. APTEo.5 is parallel to APTE and passes through Prol. Its two diagonals A1-P1 and El-T1 and another two 

segments ta and ep intersect at point Prol. 

(also Sidl and Side) (Table 1) are formed by 
muscovite replacement, 3Fe2+~2Alvi +mvi.  In 
order to differentiate Foster's Sid0-Pol series, the 
siderophyllite (formula 6) as the Fe-analogue of 
eastonite is marked on Fe-Eas or E (Table 1), and 
Rieder's series, shown in formulae (4) or (5), on 
the Fe-Eas-Pol series. 

Lapides et al. (1977) proposed two exchange 
equations for Fe-Li micas. One is equation (8) 
(The coefficient of Dvi  of equation l-8 in the 
original book was 1 instead of 0.5, which must be 
a typographic error) similar to equation (2) and 
the other (formula 9) is for Fe-Li micas with Li- 
occupancy <1.0-1.2 in a unit cell: 

1.5R 2+ + A11v + 0.5Dvi +2OH =2Li +Si +2F (8) 

R 2+ +0.8R3v + 0.2[-]vi = 1.2Li + 0.8Si (9) 

Equations (10) (Sun, 1988) and (11) (No. 5 in 
Table 3) are suggested to be essential replace- 
ments in the biotite-lepidolite series. Here, biotite 
as a low-Li member includes both siderophyllite 
and ferrobiotite (Sun and Yu, 1989a). 

R3-~ +3R~ ~ Si +R3~ + 2Li (10) 

2AIIv + 4Fe z+ --* 2Si + A1vI + 3Li (11) 

Assuming Dvi  to be constant, Henderson et al. 

(1989) indicated that Alvi occurs in the trend of 
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Fio. l. (contd.) (b) The simplified frame for showing substitution planes PMT, ATM, AME, PSE and AI-TI-P1-EI 
(APTEo.s). ALE1, ta, ep, and P1T1 are intersection lines of At-T1-PI-EI with AME, ATM, PSE and PMT, 

respectively. They are parallel to AE, AT, ZP and TP, respectively. 

unaltered Fe-Li micas as shown in (12), based on 
ion/electron-microprobe analyses of Li-micas in 
granites from SW England and France. Stone et 
al. (1997) argued that the high positive covaria- 
tion reflected in formula (12) between Li and Alvt 
is a result of a natural biotite trend and that 
formula (7) represents a Li-mica trend. Based on 
the nomenclature of Sun and Yu (1989b, Fig. 1), 
Stone's biotite trend is composed partly of 
protolithionite and partly of Mg-Fe micas 
(Li<10%zoet) with wide range of ratios for 
(Fe2++Mn):Mg (FM>2.70) (where FM = 
6(Fe2++Mn)/(Fe2++Mn+Mg) for Mg-Fe micas 
(Sun and Yu, 1989a)). 

2.2Li + 0.79Alv~ + 1.45Si = 3R2~ + 1.45Ally (12) 

Equations and generalized formulae are effec- 
tive for expressing replacements, but difficult to 
visualize and, it is especially difficult to show 

quantitatively, relations between replacements. 
Therefore, a frame expressing the substitution 
systems is proposed. 

Substitution system and its geometric  frame 

The substitution system is the sum of mica 
compositions and their replacements. The 
geometric frame expressing the substitution 
system is composed of geometric elements: 
mica points representing ideal Fe-A1-Li micas, 
mica joins (segments), substitution vectors, and 
subs t i tu t ion  p lanes .  F igure  l a  shows a 
3-dimensional frame. This visual frame has its 
unique co r r e sponden t  in 7 -d imens iona l  
chemical composition space with the coordi- 
nate system (0; Si, Ally, Alvl, Fe 2+, Li, [ ]w,  
K). The frame in hyperspace is abstract, but all 
geometric elements relative to ideal micas 
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FI6. 1. (contd.) (c) The simplified frame for showing ATM, PSE and APTE. APTE intersects ATM along Ann-Tri 
(AT) and crosses PSE along Fe-Eas-Pol (2ZP)�9 SZ is the intersection of PSE and ATM. 

correspond to each other between abstract and 
visual frames�9 

Some quantities in the abstract frame, e.g. the 
angles between two planes or between plane and 
vector, are distorted in the polyhedron with a 
3-dimensional orthogonal coordinate system (e.g. 
Cern) and Burt, 1984, Fig. 9). In addition, these 
angles in the polyhedron will vary if its basis of 
coordinate system changes�9 Therefore, no coordi- 
nate system is attached in Fig. 1. 

Ideal mica points 

Some ideal Fe-A1-Li micas with unit-cell formula 
(13) are defined in Table 1. The apices of the 
visual frame (Fig. la,b,c) represent end-members 
of Fe-A1-Li micas: polylithionite (Pol), trilithio- 
nite (Tri), muscovite (Mus), annite (Ann) and 
siderophyllite (Fe-Eas). All points inside the 

frame represent intermediate ideal micas, e.g. 
zinnwaldite (Zin), varieties of siderophyllite (e.g. 
Sid0 and Sid4), protolithionite (Pro) and its 
variety, Prol, etc. 

K2(Alw,FeZ+,Li, E] Vl)6(Si,Aliv)sO20(OH,F)4 (13) 

In the frame built in space (0; Si, Allv, Alw, 
Fe z+, Li, Flvi, K), suppose a mica point ~ with 
coordinates (14) corresponds to an ideal mica 
with formula (13). Coordinates of ~ must at least 
satisfy equations (15) to (17). So, the degree of 
freedom for the mica points is three, and ideal Fe- 
A1-Li micas can be expressed completely as a 
visual image as in Fig. 1. The 7-dimension 
coordinate system is also useful for studying 
rep lacement  re la t ionsh ips  among  cat ions  
including interlayer K for natural micas, though 
the frame involves only tetrahedral and octahedral 
cations for ideal micas�9 
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Sa A1 A1 2+ �9 e = (  ", Iv, vbFe ,LI,[Tw,K) (14) 
Alw + Fe 2+ + Li + D w  = 6 (15) 
Si + A l l v  = 8 (16) 

4Si + 3(Aliv + AIvI) + 2Fe 2+ + Li + K = 44 (17) 
K = 2 (18) 

Depending on the method of  calculating the 
structural formulae, natural  micas general ly 
cannot simultaneously satisfy equations (15) to 
(18). So, natural micas can be expressed in 
hyperspace but do not fit exactly in any visual 
frame similar to Fig. 1. 

Substitution vector and mica join 
Substitution vector 

A subs t i tu t ion  vec tor  is defined as the 
composition difference between two ideal micas. 
The substitution vector is a quantity having both 
magnitude (length) and direction. All substitution 
vectors are free vectors. 

In the visual frame (Fig. la) ,  substitution 
vector  ET, for instance,  is defined as the 
formula difference between micas in formula 
(19): Tri minus  Fe-Eas. The ET direct ion 
indicates replacement relation among ions from 
Fe-Eas towards Tri. Its length is equal to that of  
segment Fe-Eas-Tri and is a measure showing the 
extent of  replacement in the ET direction. The 
vector of  segment Sid4-Pol (Fig. la)  is parallel to 

Fe-Eas-Tri and equal to (4/3)ET (No. 5 in 
Table 2) in length. Thus, Sid4-Pol causes greater 
changes in the ET direction than Fe-Eas-Tri. Any 
segment inside the visual frame (Fig. la)  is 
s i m p l y  a s u b s t i t u t i o n  v e c t o r  ( a r r o w h e a d  
omitted). Some substitution vectors defined in 
such a way are listed in Table 2. 

A1 2+ �9 �9 ET = Tri - Fe-Eas = ( tv)_zFe_4SlzAlwL13 (19) 

In the abstract frame, ET (No. 5 in Table 3) is 
defined as the coordinate difference (formula 20) 
between mica points: Tri minus Fe-Eas. The 
numbers in brackets in formula (20) are 'substitu- 
tion components '  of  ET. The length of  ET in 
hyperspace can be calculated with formula (A1.2) 
in the Appendix. Vectors defined here are listed in 
Table 3 and are analogous to those in Table 2. 

Si Altv Alw Fe z+ Li D w  K 
(6 2 3 0 3 0 2) = Tri 

- ( 4  4 2 4 0 0 2) = Fe-Eas 

(2 - 2  1 - 4  3 0 0) = ET (20) 

Substitution vectors are equivalent to replace- 
ment equations (Table 3). For instance, ET can 
also be obtained by transposition of  equation (21). 
Moving terms, together with their signs in the left 
side of  equation (21), to the right side, the 
coefficients of  the deformed equation constitute 
substitution vector (22), which is ET in 5-dimen- 

TABLE 2. Definitions of  substitution vectors without coordinates 

No Vector Definition Expression without coordinates 

1 SP SP = Pol -S id  
2 PrlP PrlP = Pol--Prol =3(Pol-Sid3)/4 
3 Z P  Z P  = Pol -Z in  =0.5(Pol-Fe-Eas) 
4 AP AP = Po l -Ann  
5 ET ET = Tri-Fe-Eas =Pol-Pro=3(Pol-Sid4)/4 
6 MP MP = Pol -Mus  
7 TP TP = Pol-Tr i  
8 M P - 2 M T  MP - 2 M T  
9 ESa ES1 = Sidl-Fe-Eas 
10 ES ES = Sido-Fe-Eas 
11 AE AE = Fe-Eas-Ann = Mus-Phe  
12 EM EM = Mus-Fe-Eas 
13 AT AT =Tr i -Ann  
14 AM AM = Mus - A nn  
15 MT MT = Tr i -Mus  
16 S Z  S Z  = Zin -S id  
17 M Z  M Z  = Zin -Mus  

A1 2+ ( IV)-2Fe 3(Dvi) 1Si2Li4 
A1 2+ ( IV) 2Fe -5/2([-]vi)-l/2SizLi3 

2[(Allv)_tFe 2+.lSiLi] 
2 [(Aliv)_ 1Fe2+_3 SiAlviLi2] 
(AI~v)_2Fe 2+ 4Si2AlviLi3 
2 [(Altv)_ l(Alvi)_ l([~vt) 1SiLi2 
(Aliv) 2(Alvt) 1SizLi 
2[(Alrv)_lLi_lSi[]w] 
2[(Aliv) l(Alvt) 1/3(Dw)1/3Si] 
(Aliv) _2Fe 2+_ 1Si2 � 9  
2[Si_lFe 2+_IAlrvAlvI] 
2 [(Al+rv)_ 1Fe2+-2SiAlvi []vi] 
3[Fe 2 _2AlviLi] 
2[Fe 2+ 3(Alvi)2[Tvi] 
(Alvi)_l([-]vi) _2Li3 
F 2+ e l ( � 9  1Llz 
2[(Alvi) l( �9 
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TABLE 3. Substitution vectors with coordinates and substitution equations 

Vector No. Substitution components Substitution equation or generalized formula 
Si Aliv Alvi Fe 2§ Li [ ]v i  K 

1 SP 2 - 2  -3  4 -1  3nFe2++2nAltv ~ 4nLi+2nSi (1) or 
1.5R2++Aliv+0.5[3vi --* 2Li + Si (2) 

PrlP 2 - 2  -5/2 3 - 1 / 2  R2~+0.8R3+iv+0.2[S]vi ~ 1.2Li+0.8Si (2) 
ZP 2 - 2  - 2  2 K2Fe~x+Li4-x(A1,Fe3~)2AlxSi8 xO2o(OH,F)4 (3) or 

KzR~r ,:R3+R3+Sis xO2o(OH,F)4 (4), 0~<X~<4.0 
AP 2 - 2  2 - 6  4 R~+3Rv~ ~ Si+R3"~+ZLi (5) 
ET 2 - 2  1 4 3 2Allv+4Fe 2+ ~, 2Si+Alvx+3Li (7) 
MP 2 - 2  - 2  4 - 2  nLi+0.5nSi +0.5nOct.Site ~ nA1 (1) 
TP 2 - 2  -1  1 2Alrv+Alvi ~ 2Si+Li 
MP-2MT 2 2 2 2 Aliv +Li ~ Si +Dvi (3) 
ES1 2 - 2  -2/3 2/3 3A1jv+Alvi --* 3Si+[[]vi (3) 
ES 2 - 2  -1  1 2AIIv+R2~ ~ 2Si+[~vl (3) 
AE - 2  2 2 - 2  Si+Fe 2+ ~ Aliv +Alw (Fe2+-Tschermak) 
EM 2 2 2 - 4  2 Allv+2Fe 2+ ~ Si +Alvl +l~vi 
AT 3 - 6  3 2Mg ~ Alvl +Li (6) 
AM 4 6 2 3R~ ~ 2R3v~+Dvi 
MT -1  3 - 2  0.5nA1 ~ 1.5nLi +nOct. Site (1) 
SZ --1 2 --1 R2~ + E]vI ~ 2R~I (3) 
MZ - 2  2 2 --2 AlvI + [~vl ~ Fe2++Li (2) 

4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

Notes: (1) Foster, (1960a); (2) Lapides et al. (1977); (3) Rieder (1970); (4) Stone et al. (1988); (5) Sun (1988); Ginzburg and 
Berkhin (1953); (7) This paper. 

sional composition subspace (0; Si, Aliv, Alvt, 
Fe 2+, Li). 

2Alav + 4Fe 2+ ~ 2Si + Alvl + 3Li (21) 
Si Ally Alw Fe 2+ Li 
(2 - 2  1 - 4  3) (22) 

Suppose formula  (23) is the general ized 
substitution vector V. Here, vcn is the Uv3 
component of  V, C~i the cation R ei component, 
and e i the valence ofR~ 1 (i --=1, 2, ...n). Component 
Sum (C8)~mad Valence Sum (VS) of  V are defined 
as formulae (24) and (25). When R ei is only 
octahedral cations, CS and VS are marked as CSw 
and VSvI. The CS and VS are substitution 
parameters, which together with the components 
of  vector V express the substitutional characters 
o f  V. Not  all  vec tors  in hype r space  are 
substitution vectors in the same way as not all 
points are ideal or actual micas. CS + vcn = 0 and 
VS = 0 are the restriction of  substitution vectors. 

V = ( C ~ ,  C ~  . . . .  C ~ ,  vcn) (23) 
CS =Z C ~  . (24) 

VS = E ei .C~ (25) 

Mica join and its composition expression 
The term segment or mica join is used to 

express a mica combination with composition 
restrictions along it. According to the definition 
of  substitution vector, the composition expres- 
sion of  the Pro-Pol join  for both frame (Fig, l a )  
and hyperspace is Pro + t(Pol - P r o ) ;  here Pol 
- P r o  = ET (Table 2). The extension line of  this 
join  intersects plane AME (see next subsection 
and Fig. l a )  at point Sid4 and Sid4=Pro + 
tAMeET. The tAMe-value can be obtained by 
two methods. The first is the plane-equation 
method suitable for any kind of  plane, i.e. 
c o m p u t i n g  w i t h  f o r m u l a  ( A 4 . 4 )  in  t he  
Appendix. The second is the plane-constant  
method only for fundamental  types of  planes. 
In the case of  AME, the constant composition is 
Li = 0 (Table 4) and tAm~ -= - 1 / 3 .  The Sid4 
obtained is exactly the same as No. 15 in 
Table 1, and the Sid4-Pol jo in  (Fig. l a )  has its 
composit ion expression Pro +tET ( - 1 / 3  ~< t ~< 1). 

Both the mica join and its expression are used 
for describing a mica series. For example, Rieder 
(1968, 1970) described his Fe-Li mica series as 
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the join of  Fe-Eas-Pol instead of  the join of Fe- 
Eas-Tri or Ann-Tri. The Fe-Eas-Pol join has its 
expression Fe-Eas +2xZP (0~x~<l) ,  which is 
equivalent to formula (4). 

Fundamental type of substitutions and representative 
plane 

A substitution plane is determined by linear 
combination of a couple of  linearly independent 
substitution vectors. The substitution plane is a set 
of  substitution vectors and ideal mica points with 
certain characters. The common substitutional 
character of  all vectors on a substitution plane and 
the common compositional character of  all mica 
points on it are called the substitutional and 
compositional characters of  the plane respectively 
(Table 4). Some plane equations are given in the 
Appendix (equation (A1.4) and Table A1). 

All substitution planes parallel to each other are 
taken as a type of plane expressing a type of 
substitution. A type of  plane with a constant value 
of  substitution parameter is called the 'funda- 
mental type' .  The different planes of  each 
fundamental type are of  the same constant 
parameter but different constant composition 
(i.e. different compositional character). In the 
visual or abstract frame, there are only five 
fundamental types, which are represented by 
planes ATM, PSE, APTE (or APTE0.5), PMT 
and AME, shown in Fig. lb, c. Triangle APM 
connecting Ann, Pol and Mus (not shown in 
Fig. 1), for instance, is not a fundamental type of  
plane for it has no constant parameter. There are 
innumerable non-fundamental-type planes in the 

frame. The generalized formulae and constant 
quantities describing the characters of  each 
fundamental plane are listed in Table 4. 

Ally = 2 ATM and gSvl = 0 substitutions 
ATM (Fig. lb, c) is defined as triangle Ann-Tri- 

Mus. The type of substitution represented by 
ATM is that all substitutions are confined within 

ei the octahedral sheet, i.e. VSvl = Y~ei.CRvi = 0. 
Here, C~v~ is the octahedral-cation-R~ compo- 
nent o f  substitution vectors. Aliv=2 is the 
compositional character of  ATM, i.e. all mica 
points on ATM have the same composition 
SisAla = Si6A12. Points of micas with s:a>6:2 
(e.g. polylithionite) sit above ATM in the visual 
frame, and those with s:a<6:2 (e.g. Fe-eastonite) 
below it. Many natural micas, such as proto- 
lithionite, siderophyllite, biotite, phlogopite and 
muscovite, plot near ATM in hyperspace, due to 
]Xt<0.5 , generally, for their Si6+xA12_x. 

Pol* = Mus +(4/3)MT is beyond the composi- 
tion of  an ideal Fe-A1-Li mica. If  Pol* is 
considered just as projection of  Pol on the 
extension line of  the Mus-Tri side, triangle Li- 
Mus-Ann (Fig. la) becomes Foster's (1960a) Li- 
mica triangle. 

Met =2 PSE and Alvt-constant substitutions 
PSE (Fig. lb, c) is triangle Pol-Sido-Fe-Eas. Its 

substitutional character is that substitutions do not 
change Alvi-Occupancy (CAI,~ -- 0). The length of  
ZP is half as long as its Fe-Eas-Pol side. PSE has 
constant composition, Alw - 2. Mica points with 
Alvl<2 plot on the right side of  PSE in the visual 
frame, and those with Alw>2 on the left side. 

TABLE 4. Substitutional and compositional characters of substitution planes: their generalized formulae and 
associated constant quantities 

Substitution Substitutional character Compositional character 
plane General Constant General Constant 

replacement parameter composition composition 

ATM aAT +bSZ VSv~ -0  Ann +aAT +bSZ Abv =2 
PSE aZP +bSZ CAIVI --0 Fe-Eas +aZP +bSZ Alvi =2 
APTE aAT +bAE CSvI -0  Ann +aAT +bAE [5]w -0  
PMT aMT +bMP Cve2 -0  Mus +aMT +bMP Fe 2+ -0  
AME aAM +bAE CLi --0 Ann +aAM +bAE Li =0 
APTE0.s aAT +bAE CSvI -0  Prol+aAT +bAE IS]v1 =0.5 

Note: The combinations of three independent vectors, e.g. AT, AE and SZ, are enough to express all the generalized 
formulae: ZP = (2/3)AT -AE,  MT = -(1~3)AT +2SZ, and MP = - A E  +2SZ. 
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The generalized mica formula of PSE is Fe-Eas 
+aZP+bSZ, which is equivalent to formula (26). 
When Y=4-X, formula (26) becomes a general- 
ized formula, the same as formula (4), an 
explanation of  the Fe-Li mica series. 

K2A12Fe2+xLirSi12_2x yAI2x+Y_402o(OH,F)4 (26) 

[] vl = 0 APTE and CSvI =0 substitutions 

APTE (Fig. lc) is the planar quadrilateral Ann- 
Pol-Tri-Fe-Eas. The substitutional character of 
p l a n e s  r e p r e s e n t e d  b y  A P T E  i s  
CSvI = ZC~vl  = 0, i.e. substitutions do not 
change the numbers of  octahedral vacancy. All 
ideal micas with compositional character [~vi = 0 
are coplanar on APTE. All CSw 0 planes in 
Fig. 1 are [ ]vi  /> 0, planes parallel to APTE and 
occurring on its left side. 

Quadrilateral A1-T1-P1-E1 passing through 
Prol (Fig. lamb) is a part of  APTE0.s (Table 4). 
Its diagonals A1-P1 and El-T1 fit well to the trend 
of natural Fe-Li micas (Sun and Yu, in prep.). 

Fe2+-free PMT and Fe2+-constant substitutions 
PMT (Fig. lb) is the triangle Pol-Mus-Tri and 

is equivalent to Mufioz's (1968) triangle musco- 
vite-trilithionite-polylithionite. Any replacement 
vector without Fe 2+ (Cve2.~ = 0) is parallel to PM T. 
Ideal Fe-A1-Li micas with Fe 2+ = 0 and points on 
PMT correspond to each other. Vectors MT and 
MP are the most amportant replacements for A1-Li 
micas (Foster, 1960a; Chaudhry and Howie, 
1973). 

Li-free AME and Li-constant substitutions 
AME (Fig. lb) is the triangle Ann-Mus-Fe- 

Eas. AME can be enlarged as the planar 
quadrilateral Ann-A1-Cel-Mus-Fe-Eas because 
aluminoceladonite (A1-Cel, No. 6 in Table l ,  
not shown on Fig. 1) is also Li-free. The constant 

parameter of substitutions represented by AME 
is eLi = 0. 

AME represents Fe-A1 micas that occur in Li- 
deficient and fo2-1ow environments of crystalliza- 
tion. Simultaneous replacements of AM and AE 
result in a break of continuity of  variation in A1- 
distribution between tetrahedral and octahedral 
sheets (Sun and Yu, 1989b, Fig. 2 and 1984, Fig. 4). 

Discussion 

The frame can express the entire substitution system 
Not all substitution vectors and substitution 
planes of  ideal micas in the frame are shown. In 
fact, the planes mentioned above, e.g. AME, can 
be enlarged, and not all bounding planes (e.g. 
A l l y -  0 and A l i v =  4 planes) are shown in 
Fig. 1. However, for our purpose, both visual 
and abstract frames have expressed the entire 
substitution system of Fe-A1-Li micas as formula 
(13). The reasons are as follows. (1) All of  the five 
fundamental types of  substitutions have been 
expressed in the frame. (2) Any ideal mica and 
any segment expressing the Fe-Li mica series 
[e.g. Fe-Eas + 2xZP (0~<x~<l)] have been 
restricted by Li-free AME and Fe-free PMT. 
(3) With the combination of  any three vectors on 
ATM, APTE and PSE, respectively, e.g. formula 
(27), all ideal micas and their replacement 
relations can be expressed simply�9 

t(AT - x A E  + kSZ) (27) 

The angles (Table 5) between each pair of  
planes are calculated based on normal vectors of  
planes (Table AI  in the Appendix) with equation 
(A3.4). The angles of  ATM relative to PSE and 
APTE are as large as _+69.7 ~ and the angle 
between PSE and APTE is 62.2 ~ The large angles 
imply  great  d i f fe rences  in subs t i tu t ional  
characters between these definitions. 

TABLE 5. Angles between fundamental substitution planes in composition space with the 
coordinate system (0; Si, Aliv, Alvi, Fe 2+, [S]vb Li, K) 

Substitution APTE PSE ATM PMT AME 
plane CSvI - 0 Alv~ - 2 VSvl - 0 Fe a+ = 0 Li = 0 

APTE 0 o 
PSE 62.2 ~ 0 ~ 
ATM 69.7 ~ 69.7 ~ 0 ~ 
PMT 76.6 ~ 38.0 ~ 85.4 ~ 0 ~ 
AME 38.0 ~ 76.6 ~ -85.4 ~ 73.1 ~ 0 ~ 
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Four types of series proposed 
Based on the geometric position of  the segment 
(or vector) relative to ATM, APTE and PSE, six 
expressions proposed for Fe-Li mica series are 
divided into four types. 

TABLE 6. Angles between supposed essential replace- 
ments  in composi t ion space with coordinate 
system (0; Si, Allv, Alvl, Fe 2+, Dvi ,  Li, K) 

Vectors ET AP ZP PrlP SP AT 

Type h the intersection of  ATM and APTE (Fig I c) ET 
In this case, the essential replacement is AT (cf. AP 

Ginzburg and Berkhin, 1953), which has substitu- ZP 
tion characters of  ATM and APTE, i.e. CSw - 0 PrlP 
and VSvI = 0. SP 

AT 

Type 2: the joins of Sido-Pol and ProI-Pol on PSE 
(Fig l o) 

The direction vectors of  these two joins (or 
their essential replacements) are SP and Prl P (cf. 
Foster, 1960a, Lapides et al., 1977). In this case, 
Alvi = 2 in micas. 

Type 3: intersection of  PSE and APTE (Fig. I c) 
In this case, the essential replacement is ZP (cf. 

Rieder, 1970; Stone et al., 1988), which keeps 
cons tant  compos i t ions  o f  PSE and APTE,  
Alw = 2 and [3vi = 0, concurrently. 

Type 4: substitution vectors AP and ETon APTE 
(Fig. to) 

These are defined as the essential replacements 
(Sun, 1988 and No. 5 in Table 3). Both have 
constant parameter  CSw = 0, i.e. D v i  is a 
constant component during replacement. 

The replacements from AT (type 1) to SP, PrlP, 
and ZP have been changed enormously: the 
angles (Table 6) of  AT relative to the latter are 
the greatest, >45 ~ SP and PrIP as the same type 
(type 2) have the smallest angles, 7.9 ~ ZP (type 
3) shows only slightly larger angles to SP and 
PrlP, 19.4 ~ and 11.5 ~ respectively. AP is a special 
replacement, which, compared with replacements 
of  the other three types, has intermediate angles 
(from 23 to 29~ ET and AP as the same type 
(type 4) are similar to each other (9.6~ though 
ET is slightly closer to ZP, SP and PrlP but further 
from AT than AP. 

Fe-Li mica series have no more than five possible types 

Formula (27) can not express the mica series 
without restriction, simply. All studies on Fe-Li 
mica series have an implicit assumption: to find 
one or two fixed quantities of  Aliv (Si), Alvb and 
D v i  in the t rend o f  natural  Fe-Li micas.  
Therefore, the types of  segments that possibly 
express the Fe-Li mica series have only six: three 

0 ~ 

9.6 ~ 0 ~ 
19.4 ~ 29.0 ~ 0 ~ 
17.2 ~ 25.5 ~ 11.5 ~ 0 ~ 
19.7 ~ 25.8 ~ 19.4 ~ 7.9 ~ 
32.8 ~ 23.3 ~ 52.2 ~ 47.6 ~ 

0 ~ 

45.6 ~ 0 ~ 

types of  segments are on ATM, APTE or PSE, 
and the others the intersection lines between each 
pair of  planes. Besides the previous four types, the 
two other types are the intersection of  ATM and 
PSE (the Sido-Zin join) and segments on ATM 
(Fig. la,c). 

The Sido-Zin join, however, does not end at Tri. 
I fPSE is translated to pass through Tri, the Li-free 
end of the new intersection becomes a dioctahedral 
mica ,  KzA13Fe2+3/2([S] vi)3/zSi6A1202o(OH)4 . 
Therefore, the intersection between ATM and 
PSE can not define the Fe-Li mica series. 

All vectors on ATM have a formula VATM = 
A T - y A M .  When y = 0, VATM = AT, which is the 
type 1 mentioned above. When y = 1/2, VATM 
becomes the direction vector of  segment Sid0-Tri. 
When y>l /2 ,  the points on Li-free side of ATM 
are dioctahedral because their octahedral occu- 
pancies are <5.0 (according to the definition of  
Rieder et al., 1999). So, VATM (0<y~< 1/2) may 
also be a definition of  the Fe-Li mica series and is 
called ATM-type or Aliv-constant type. 

Consequently, the number of  possible types of  
series definitions is five at most. All possible types 
of  the series have been proposed except the ATM- 
type. 

Restriction of the expression t(AT- ~E  + kSZ) 

Six essential replacements, formulae (28) to (33), 
correspond to six supposed definitions of  the 
Fe-Li mica series. 

AT = AT + 0AE (28) 
AP = (4/3) (AT - 0.75AE) (29) 
E T = A T - A E  30) 
ZP = (2/3) (AT - 1.5AE) (31) 
SP = (2/3) ((AT - 1.5AE) + 1.5SZ) (32) 

Prl p = (4/3) ((AT - 1.5AE) + 0.75SZ) (33) 
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The previously mentioned four types of the 
series imply four different kinds of restrictions of 
x- and k-values in the generalized expression (27). 
AT is the common component of the six essential 
replacements. The dispute on restrictions is 
whether or not octahedral AT-replacement needs 
to be accompanied simultaneously by replace- 
ment of Si for Ally (x - 0), by filling octahedral 
vacancy (k = 0), and by increase in Alvi to 
balance the AE-adjustment (x = 1.5). 

Reliability of the definitions of the Fe-Li mica series 

What compositional characters do natural micas 
have? What kind of vector best fits the 
composition trend of natural micas? The defini- 
tions of the Fe-Li mica series need to be compared 
with the spatial positions of geometric elements of 
the frame with natural Fe-Li micas and with the 
trend variation of micas. The frame is a datum 
system for the comparison, and the formulae 
listed in the Appendix are a means for this 
comparison. However, further work is needed in 
order to determine quantitatively the trend 
variation of natural Fe-Li micas (Sun and Yu, in 
prep.) before we can make that comparison. 

Conclusions 

A new geometric frame with both visual and 
abstract forms has been set up for expressing the 
entire substitution scheme of the Fe-A1-Li micas. 
The frame is used for two purposes: to 
differentiate proposed definitions of the Fe-Li 
mica series and to determine quantitatively the 
range of the Fe-Li mica series. 

For the former, it has been proved that the main 
issue for the Fe-Li mica series is whether the 
replacement of Li for Fe 2+ needs the balance of 
Alw, Alvl or [3w. For the latter, a set of formulae 
determining spatial positions and relations of 
geometric elements in multi-composition space 
has been suggested, The frame, together with the 
calculation formulae, is a datum system to 
measure the compositional and substitutional 
characters of natural Fe-Li micas quantitatively. 
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A p p e n d i x  

The following discussion is carried out in a 
7-dimensional chemical composition space with 
the coordinate system (0; Si, Altv, AIvi, Fe 2., Li, 
[~vl, K). 

Equation of substitution plane 

Suppose PN is a substitution plane in composition 
space. Plane PN has a normal vector N (AI.1) 
with length LN (A1,2). A mica point e on PN 
represents a mica with composition (A1.3), which 
must satisfy equation (AI.4) of  plane PN. 

N = (nl, 112, n3, n4, ns, n6, n7) (AI.1) 
7 

L N = ( ~ n 2 )  1/2 ( A 1 . 2 )  
i 1 

g - (Si, Aliv, AIvz, Fe e+, Li, [~vv K) (A1.3) 
nlSi +n2Allv + n3Alvl + n4Fe 2+ + 

nsLi + n6Dvl + nTK + C =0 (A1.4) 

The K-value of  any mica G) in plane PN is = 2. 
C in (A1.4) is called the constant of PN. The 
direction numbers of N constitute the coefficients 
of  variables in equation (AI.4). Equation coeffi- 
cients and constant C together with len~h LN of 
N are listed in Table A1 for some planes 
explained in the text. Plane APM (Ann-Pol- 
Mus) is not shown in Fig. lb,c. 

Distances of mica points to a substitution plane 

Suppose a group of  m mica analyses is expressed 
as m points in composition space. The distance of  
point Sj (AZ1) to plane PN (A1.4) is dj (A2.2). 
The mean and variance of distances of  the m 
points to PN are a (A2.3) and u (A2.4). 

Sj = (Sj l  , s j2  , s j3,  s j4  , s j5,  s j6,  s j7 )  (A2.1) 
7 

dj =l~n~sji + CI/LN (A2.2) 
i I 

TABLE A1. The coefficients ni and constant C of  plane equation (A1.4), and length LN of normal vector N for 
each substitution plane 

Substitution Normal vector N Constant Length 
Plane nl n2 n3 n4 n5 n6 n7 C LN 

ATM 10.0 - 10.0 
PSE - 6.0 6.0 
APTE 6.0 -6.0 
APTE0.5 6.0 -6.0 
PMT 2.0 -2.0 
AME -2.0  2.0 
APM 38.0 -38.0 

-3.0 -1.0 1.0 3.0 0.0 -34.0 2(55) 1/2 
t5.0 -17.0 -5.0 7.0 0.0 38.0 2(165) 1/2 
7.0 -5.0 -17.0 15.0 0.0 6.0 2(165) 1/2 
7.0 -5.0 -17.0 15.0 0.0 -16.0 2(165) 1/2 

17.0 31.0 9.0 5.0 0.0 -86.0 2(341) a/2 
5.0 9.0 -31.0 17.0 0.0 -46.0 2(341) 1/2 
7.0 5.0 -27.0 29.0 0.0 182.0 2(1133) 1/2 
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7 
a = ~ d j / m  (A2.3) 

i=1 

m 
o =~-~(dj - d)2/(m 1) (A2.4) 

j= l  

The angles between substitution vectors and planes 

Suppose V (A3.1) and W (A3.2) are two vectors 
(substitution vector or eigenvector) with length 
Lv and Lw respectively, which are expressed in 
the same way as (A1.2). Arcsin 13 (A3.3) is the 
angle between vector V and plane Py, and arccos 

(A3.4) is that between V and W. If V and W are 
the normal vectors of the substitution planes Pv 
and Pw, arccos ~ (A3.4) shows the size of the 
angle between Pv and Pw. When ~>90 ~ the angle 
between two planes is expressed as ~ -180  ~ 

V = (vb v2, v3, v4, vs, v6, vT) (A3.1) 
W = (Wl,  w2 ,  w3,  w4,  w5,  w6,  W7) (A3.2) 

7 
Sin 13 = ~'~l nivi ]/(LNLv) (A3.3) 

i 1 

7 
Cos ~ = ~'~Viwi/(Lv Lw) (A3.4) 

i--1 

Coordinates of the intersection point between 
the mica join and plane PN 

Suppose mica join (straight line) Yv (A4.2) is 
parallel to vector V (A3.1), passes through mica 
point Q (A4.1), and intersects plane P~ (A1.4) at 

point x. Line Yv has parameter t. Coordinates of 
intersection point x, Y~, can be computed with 
equation (A4.3). 

Q = (ql, q2, q3, q4, qs, q6, q7) (A4.1) 
Yv = Q +t V (A4.2) 
Yx = Q +tvV (A4.3) 

Here, 

7 ? 
tp ( ~ n i q  i + C ) / ~ n  iVi (A4.4) 

i=1 i 1 

Distance between a mica point and the mica 
jo inYv=Q + tV 

Suppose mica points Q and R have compositions 
(A4.1) and (A5.1), vector V (A3.1) has length Lv. 
The vector from Q to R, QR, has length LQR 

(A5.2) and the angle between QR and V is 
arccos ct (A5.3). The distance of R to mica join 
Y Q +tV is L (A5.4 or A5.5). 

R = (rl, r2, r3, r4, rs, r6, r7) (A5.1) 
7 

LQR [ ~  (qi - r i)2] 1/2 (A5.2) 
i~l 

7 
cos cz - [~vi (q i  - ri)]/(Lv LQR) (A5.3) 

i=l 

L - LQR sin ~ (A5.4) 
7 

L = {L~R -- [ ~ v i ( q i -  r i ) ]2 /Lv2}  1/2 (A5.5) 
i=1 
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