Two Analyses of Crystals of Apatite. By Henry Robinson, M.A., Downing College, Cambridge.

BEFORE commoncing the analysis I sifted the crystals to remove all small ones and dust, and then picked out, as far as possible, the hematite and every thing which differed from the general mass of crystals. By these means I obtained a very uniform sample of fair sized crystals. The whole was then finely powdered and divided into two portions, of each of which an analysis was made. I had reason to suppose that in the analysis I made proviously* some of what appeared as CO_{2} was really fluorine, so before making these analyses I made some experiments to see if I could arrange the strength of my acid so that while the substance was dissolved, the hydro-fluoric acid should not be given off on boiling the solution for a reasonable time to get rid of the CO_{2}. By using a sufficient quantity of a dilute solution of nitric acid containing 147.5 grams of HNO_{3} in the litre, I succoeded in my object. All dissolved in the cold except a few particles of hematite and quartz- 2.0 mgrms . from 781.75 mgrmg., and on boiling the solution and drawing air through it there was no taste of any acid but CO_{2}; the hematite also remained undissolved. As the hematite and quartz were evidently foreign to the mineral, I deducted the amount found of them from the substance originally taken, as also I did the very small quantity of water present, 0.2 mgrms. in 781.75 mgrms. There was scarcely a trace of iron dis. solved, not enough to estimate. In the first of these two analyses I evaporated the nitric acid solution, obtained after estimating the CO_{2} to dryness; converted the solids into chlorides, and went through the asual process to remove silica, but none was present. The lime was precipitated as oxalate and weighed as sulphate; the phosphoric acid was estimated in the ordinary way as magnesium pyro-phosphate, the CO_{2} from the loss of weight after decomposing the mineral with the dilute nitric acid already mentioned. The fluorine was estimated indirectly as follows :-I took the necessary amount of lime from that found to convert the whole of the CO_{8} and $\mathrm{P}_{2} \mathrm{O}_{5}$ into carbonate and phosphate, and the remainder I calculated as fluoride. For A 948.94 mgrms . of the mineral were taken, for B 727.3 mgrms.

A		B	
	Mgrms.	Mgrms.	
$\mathrm{CaCO}{ }_{3}$	$27.0=2.845 \%$	$21 \cdot 0=$	2.887 \%/0
$\mathrm{Ca}_{3} 2 \mathrm{PO}_{4}$	$836.1=88.108$,	$648 \cdot 8=$	$89 \cdot 206$,
Ca F_{2}	$85.8=9.041$,	$62 \cdot 2=$	$8 \cdot 552$,
	$948 \cdot 9=99.994$	$732 \cdot 0=$	$100 \cdot 645$

In B there is most likely a slight error in excess in the phosphoric acid; this brings the fluoride a little too low and the total too light. I should have said there was not more than a mere trace of chlorine present, if any.

The following analysis A was the mean analytical result obtained by Dr. Flight for francolite, and B expresses the proportions of the typical formula of apatite.

	A	B
$\mathrm{Ca}_{3} 2 \mathrm{PO}_{4}$	83-261	92-26
CaF_{2}	$7 \cdot 683$	$7 \cdot 74$
CaCO	$5 \cdot 104$	-
$\mathrm{Fe} \mathrm{O} \& \mathrm{Mn} \mathrm{O}$	0.918	-
Na 0	$0 \cdot 694$	-
$\mathrm{H}_{2} \mathrm{O}$	1.593	-
	99-248	$100 \cdot 00$

