NOTES AND NEWS

facilities of the Museum for these investigations. The assistance of Dr. W. F. Foshag and Mr. E. P. Henderson of the United States National Museum, and Dr. J. P. Marble was greatly appreciated.

NOTES AND NEWS

OCCURRENCE OF WAVELLITE, GILES COUNTY, VIRGINIA

LENA C. ARTZ,

Arlington, Virginia.

The specimens of wavellite described below were collected approximately one mile northeast of Kern post office, along Big Stony creek, Giles County, Virginia, during July 1938. The mineral occurs in red sandstone of Clinton age as incrustations on joint planes. The sandstone

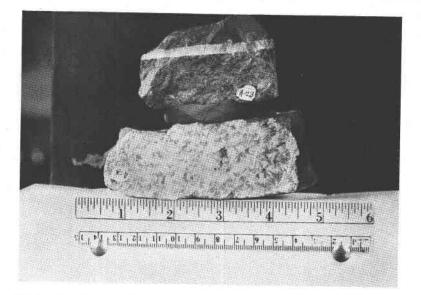


FIG. 1. Wavellite, upper photograph showing the thin incrustation in a joint plane, and lower the radiated mineral. Photo by Jos. K. Roberts.

is colored red to brownish red by iron oxides, and its Niagaran age is indicated by its fossil content. Wavellite is not at all a common mineral in Virginia or elsewhere, and only small amounts were collected at this one locality in Giles County.

The mineral occurs in radiated, fibrous form, and individual fibers attain as much as 1 cm. in length (Fig. 1). Some of the incrustations are as much as 4 mm. thick, but usually much thinner. The mineral aggre-

664

gates are white in color with a pearly to vitreous luster, and the fibers are translucent to transparent. The mineral gives the usual test for phosphorus with nitric acid and ammonium molybdate. In the field it might be mistaken for a zeolite, except for its association with sandstone.

The indices of refraction are nearly those of the wavellite described recently by F. Ulrich (*Min. Abs.*, **II**, 1923, p. 141). It is optically positive, $2V = 70^{\circ}-75^{\circ}$; the indices determined by the immersion method with white light are as follows: $\alpha = 1.530$, $\beta = 1.540$, and $\gamma = 1.558$; B = 0.028, dispersion distinct, r > v, and Z = c axis. The high indices are probably due to the presence of iron. There are no indications of hydrothermal action and while the origin of the wavellite is apparently secondary, the writer offers nothing towards the particular mode of genesis. Gratitude is hereby expressed to Miss Jewell J. Glass, U. S. Geological Survey, who made the physical measurements. The specimens are in possession of the Biological Station of the University of Virginia at Mountain Lake, Giles County, Virginia.

PROCEEDINGS OF SOCIETIES

MINERALOGICAL SOCIETY OF SOUTHERN CALIFORNIA (Extracts from the annual report of the President, June 18, 1938)

On this seventh anniversary of the founding of the organization, I shall simply summarize the events of the current year.

In September, 1937, Buel Hunt of the U.S. Forest Service exhibited two films teaching the importance of conservation of our chaparral, and the necessity of erosion control. In October, Dr. William C. Putnam of Los Angeles Junior College gave an illustrated lecture on the geology and mineralogy of the Mono Craters. In November, Dr. Ward Smith of Pomona College taught us the preparation and use of thin sections of rocks. In December, Donald Curry, geologist of the Death Valley National Monument, told us of his area's geologic and historic background. The feature evening of the year was on January the tenth when we were honored by the presence of the well-known mining engineer, Dr. Louis D. Ricketts, who spoke on his work at Ajo, Arizona. His address was illustrated with motion pictures. In February, Dr. John H. Maxson of the California Institute of Technology, spoke on "Mineral Development in Siberia." In March, Alfred Livingston of Los Angeles Junior College gave us convincing proof that our Southern California beaches were in imminent danger of destruction. Through the courtesy of the Union Oil Company, our April program consisted of two fine geological motion pictures. In May, Major Julian Boyd, consulting engineer for the Pacific Coast Borax Company, gave us the benefit of his wide knowledge of gold mining. Tonight we had the pleasure of enjoying the remarkable colored motion pictures taken by Charles Heald on the Society's last two nine-day excursions into Arizona and Nevada.

Our first and largest excursion of the year was on Sunday, October 17, to Soledad Canyon, Vasquez Rocks and vicinity, with the surprising number of 90 cars and 300 people in attendance. Excellent titaniferous magnetite, ilmenite, borax ores, geodes, etc., were obtained by all. On Armistice Day, November 11, a much smaller group collected Cretaceous fossils in the Santa Ana Mountains. A most successful overnight trip was held on Novem-