
COMPUTATION OF INTERFACIAL ANGLES, INTERZONAL
ANGLES, AND CLINOGRAPHIC PROJECTION

BY MATRIX METHODS

W. L. BoNn.
Bell Telephotte Laboralori,es, Murray Hill, Neu Jersey.

Arsrnecr

A way of setting up the general crystallographic axes @, b, r on unit orthogonal axes

tc, y, z is used to afiord a matrix method of computing interfacial angles and zonal angles.

It also afiords a method of making clinographic projections.

Inrnorucrrort

The problems of crystal geometry are mainly problems of relations
between directions in space. The "direction" of a crystal face is most con-
veniently characterized by the direction of a line perpendicular to the
face, this line being called the normal of the face. It is often very helpful
to restrict this normal to uuit length, in which case it is called a unit
normal. A unit normal, then, is a l ine having both length and direction
and hence fits the definition of a vector. Ih specifying a group of vectors
we may state their lengths and directions very conveniently in terms oI a
set of three non-coplanar vectors which intersect at a point called the
origin. We shall always call these three vectors the base vectors to avoid
confusing them with the other vectors. Let us assume that we have base
vectors a, b, and c of length a, b, and c units, respectively, and wish to
specify a vector 7in terms oI a, b,and c. We imagine moving Tabout in
space, without changing its direction, unti l the tail end of 7 is at the
origin. We now find that we can reach the head end oI V by taking tr/r
steps of length a along a, then taking Z2 steps of length D parallel to b
and finally /3 steps of length c parallel to c, see Fig. 1. These three
numbers Vr, Vr, and Va are the components of the vectors 7 on the
a b c basis. We shall denote this fact by means of the equation:

(v)" :

where the subscripts o remind us that these components are stated on
the a b c basis which we shall henceforth call the o basis.

On another system with base vectors d e f the components of Y will
be quite different. Let us say that on this system, which we shall call the
d basis, the components are Vr', Vr', ar'd Vt'; that is:

(i,')
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( v )o :

If we know the relationship between the o and d bases, we can compute
the components of any vector 7 on one basis given its components on the
other. This relationship between bases is most conveniently given in

terms of a matrix, i.e., a rectangular array of numbers (the numbers
being the components of one basis on the other). As an illustration of a
matrix, and also of a special kind of "multiplication" known as matrix
multiplication, we multiply the vector

which is a new vector. It is seen that the resultant components are found
by surnming products in a systematic way, namely, the first resulting
component is the sum of the terms of the first row of the matrix multi-
plied in turn by the components of the vector, the second is the sum of the
terms of the second row of the matrix multiplied in turn by the compo-
nents of the vector, and similarly for the last component. After a little
practice this kind of "multiplication" becomes purely mechanical. In
terms of this kind of multiplication we now give the equation that allows
us to compute the components on one basis given the components on the
other basis and given the matrix connecting the bases:

Frc. 1. nrustration or the 
""..- (i)

@.: (i)r, "" matrix m: (; ,i i)

m(v) :(,; ,i i)(i):(,;iri,: iii,i;i) (::)

(v)a:  M(v)" . (1 )
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As an example, we write the matrix that gives the relationship between

a simple set of vector s x, y, z (all of unit length and mutually perpendicu-

lar) and the set of vectors ab c taken as the axes of a triclinic crystal,

Fro. 2. Triclinic system as related to t system.

6 being equal to unity. If we take c as lying along z and let a lie in

plane of x and z (see Fig. 2)* we get the matrix:

/ a s i n B  0 t  0 \
I t

M : l  0  t : z  0 l

\ a c o s 0  c o s d  t /

where a, B and l are the triclinic angles of the crystal and where

CoS'Y -  cos  d  cos  B
v r : - - .  - -

srn p

V costt
i ' 2 : -  -  

t t r l B  
-

Here p is taken as the obtuse angle of the regular triclinic axes. In this

matrix, M, the columns are the components of the vectors a, b and c

on the r basis, that is:

the

(2)

.,": (.I,) (b,.:(..,. 
). 

and (c," : (l)"

* The * basis is convenient not only in performing certain crystallographic computa-

tions, as will be shown below, but also as a basis to which to refer the vectors and tensors

involved in the expression of elastic and electric properties of crystals'
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As an illustration of the use of equation (1)
ponents on the c basis of a vector

will compute the com-

( V ) " :

By matrix multiplication we see that:

To solve the inverse problem, namely, given (Z), to find (Z), we use
the reciprocal matrix M-t, the columns of which are the components of
xy and z on a b and c, respectively.

1  - r t

, .-i" p .r, 
"r" B 

0

o 7 / u o
-i1L4 ,'.o10 -_'91o 

t/c
C t2C

.,": (;i,: .";,,. :)(l) : (.::{.,)

,-'(.:J.,) : (i).

(3)

we may easily r-erify that

M-L :

We need one more variant of these matrices, namely the transposed
matrix M.It is merely the matrix re-written so that the columns appear
as rows and the rows as columns. For example, the transposed M-r
matrix is:

I

o s i n B

artz sin 0

0

-  c o t B

(4)

This can be read "M bar reciprocal."
Vectors themselves can be regarded as one-column three-row, or one-

row three column, matrices. fndeed they have implicitly been so re-
garded while we subjected them to matrix multiplication. Thus as a
special case of the transposed matrix we have the transposed vector, for
instance (V),:1Vr, Vr, Vr),.

On the c basis some equations become quite simple. For example, the
cosine of the angle between two unit vectors (V),and (W),is given by
matrix multiplication as :
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cos €ue : (v),(w)" (5)

which is the matrix notation for the familiar vector definition of scalar

product. To illustrate we take the two unit vectors

Cos e; :

In the order to utilize equation (5), if the vectors on the r basis are

not of unit length, we must make them so. We can do this by dividing

each vector by its length. The length of a vector is the square root of

the sum of the squares of its components on the r basis' This process we

shall call "normalizing."* It will be symbolized by the superscript z

alter a vector. For example. the vector

normalizes to

,,.: ( : ' ; , \  and (w).:r-1,,)
\  o I  \ "s/z l

, ;  /  o \  ,  L i(+' +''). (:y;) .: f,*o - f,"f +o"f'
/.

Cos e," :  - - l - i l  rvhence e. ' :  115o40' '

":(i)
t,",: (i ),

The case of triclinic crystals being the most complicated case rn

crystallography, we should expect the matrices for simpler crystal

systems to be simpler than the matrix M, as indeed they are. If we put

a:'y:90o we meet the conditions of the monoclinic system. Equations
(2) and (3) give the respective forms for the monoclinic system:

(6)

as i r : .P
0 1 0

--2: 
o t/c

* Normal is used in two senses. As first used, a line normal to a plane is perpendicular

to it. When we normalize it we reduce it to a "Norm," namely unit length.

M*-r : (7)
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If we put F:90'we find the forms for the orthorhombic system:

/ "  o  o \
Mo : l  o  I  o  l .  ( 8 )

\ o  o  , /

/ r / "  o  o \
u; , : lo  1  o  )

\o  o  t1 , f  (e)

I f ,  in  equat ions (2)  and (3)  we put  a:b--1,  a:B:90o and  ̂ y :L20",
we find the form for the hexagonal system:

l r  
-u2 o \

M n : 1 0  \ / 3 / 2  0 l .  ( 1 0 )

\ o  o  , /

/r r/,/3 o 
\, r .1 , - ' : (o  z / \ /3  o f  

.  (11)
\o o l /c f

For completeness we give the matrices for the little used rhombohedral
or trigonal system:

/ slz -3/2 0\
,.: ( utit, vs;tz -v3 ) 02)

\ " r c /

,.-,: r( -t, 
'1,1: 'i,:\ 

(13)
\  o  - 2 / t 3  r / c /

where c (the same c as that in the hexagonal system) is given in terms of
the rhombohedral angle a by

' :{t rt-ii,:"" ' 
(14)

In equations (8) and (9) we put a: I to obtain the forms for the tetrag-
onal system:

(1s)

(16)
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Final ly, we put c: l  to obtain the matrix for the isometric system:

In the following, general rules will be stated in terms of the matrix M,

it being understood that the appropriate subscript will be supplied ac-

cording to the system of the crystal being studied.
A great aid to understanding crystal problems is the concept of a

vector basis reciprocal to the o basis. We shall call this the ,4 basis. Its

base vectors are A, B and C. On the r basis the components of A are the

three terms of the hrst column oIM-1, of B are the terms of the second

column, and of C are those of the last column. A is perpendicular to

b and c, B to c and a, C to a and b. Conversely, a is perpendicular to

B and C, b to C and A, c to A and B. Given a vector (V)a on the ,4 basis
we can find its component on the r basis bv means of the equation

(v),:  M-t(v)A.

TuB DrnocuoN oF Fece NonuALS AND INrBnllcrer ANcrBs

A crystal face with Miller indices (h k l)" on the a basis has a normal

with components on the ,4 basis of :

If we wish to convert this to the r basis we apply equation (18). This
shows us how to compute the angle between any two faces, say (h k l)

and (h' k' l') for we may write them as vectors

on the ,4 basis, then convert these normals to components on the r basis,
normalize them, and multiply them together as in equation (5) to give

the cosine of the angle between the plane normals, this being the angle
crystallographers call the angle between planes. As an example we take
rhodonite, and compute the angle between two faces. Here a: l '0728
6 :1 ,  and  c :0 .6273 ,  a :103 "  18 ' ,  P :108o  44 ' ,  and  T :81o  39 ' .  Whence
t  r :0 .07533 and a2:0.97026 so that

-:ft:l) :'" (17)

(18)

(i) ^

(i)."- (T,t)^
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2 1 2 2
\r/ \,/ \,/
//\ r/\ r^

0 0 1 0

10121.

*-,,: tu-( ;): /-';iX\:\, rr,i: (- X:,;i\
\  r /  \  t .ooos f .  \  .+ ts+of .

,r, : *-'( 
-'\ f -t '+zzz\ / - 'sssoo\

\-?/ 
: (-l .i")"' ": (; ##/.

cos(22r)\(221) : (- .42137, .763s6, .4834s) (-. i i l3i)
\ + .60367 /

whence 
: 'l,fi,^;u"il'j'r*r;i"*: 06742

The angle between the planes (221) and (221) is the angle between
their normals /y'zrt and 1y'2r.

Drnpcrron ol'ErcBs

The zone symbol* derived from the indices of a pair of planes can be
interpreted as the components, on the a basis, of a vector parallel to
both planes. (It can also be interpreted as the indices, on the reciprocal
basis, of a plane perpendicular to both of the original planes.) To find
the components on the r basis we have only to multiply the zone symbol
by the appropriate M mai.rix.

ANcrrs BBrwrBn ErcEs

To find the cosine of the angle between two edges we first "cross
multiply" to obtain the two zone symbols of the edges. These are con-
sidered as vectors on the o basis and their components on the r basis
are computed. These vectors are converted into unit vectors and their
scalar product found. Rhodonite wil l again be used as an example: f ind
the angle between the edge formed by (100) ana (22t) and the edge
formed by (100) and (110). The zone symbol of (100) and (22t) is:

2

1

* It will be recalled that the zone symbol lutwl lor the planes (h k l) and (h h l) is
givenbycross-mul t ip l icat ionaccordingtothescheme u:kh- l ,h,a: lhr-hh,w:hht-hkt .
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Hence the edge between (100) and (221) is parallel to the vector

/ o \
[ '1.
\ 2  / "

The zone s1'rnbol of (100) and (110) is

which becomes the unit vector

Since the edge between (221) and'(100) i-t:

_  / o \
(Efil)": I t l, wehave (E131)': M(Eni)"

\ , /

: (- -1,. ,:;zi: i,,)(i): (,,:il::)
which gives the unit vector:

39

0

0

Similarly

'':(;hi).
" il: (l) : ( i,,)

,t': (l)
Finally

;, /.osso+\
.osaii inrlJi:  (001)[ 'oooaz l:  '720es,

\.zzoos/
or the angle is 43o52'.

Cr.rxocnepnrc Pno;ncrroN sv Marnrx Coupurarton

An edge direction'(E)" can be projected onto the plane of the clino=

graphic projection by multiplying by the matrix:
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K : (19)*

Good enough for practical use is the approximation (with reversed sign):

K' :  ( :  - l '  
9^)  (2o)

\ 3  1  - 1 9 /

In drawing crystals of the hexagonal system it is customary to turn the
crystal 30" further clockwise than for other systems. This changes the
clinographic matrix. It can be conveniently taken as

o , . -  / " r  
- 9 6 3  o  

\'  :  
\ r r o . z  s2 .7  - t ooo  c  ) '  

( 21 )

rf D is the two dimensional vector giving the direction of the projection of an edge we
have:

D : K(E)".

But (E)":M(E). where

D:  KM(E)" .

As an example we again take rhodonite

(22)

(23)

* ' * :  ( :

\ - . 3 4 s

/  6 . 7 0  - 1 7 . 0 r  0  \:  
\ r o . o o  s . s 7  1 1 . 8 0 / '

., : (!) : t,:';: -'l ll ,1,) (?)
\ r /  

\ r u ' o u  5 ' 5 i  
" ' u t \ z /

Hence, in Fig. 3, we would lay out 17.01 units to
and 29.2 units up. The edge projection is parallel to

.0753

.970

.230

Whence, the edge, for instance, between (221) and. (100) which is

-  / o \
a?i l :  (  r  )

\ 2 /
is projected as

: C;Ti')

* Ilere the bottom row (18/\/Trc,6/\/97A, I/\/Tf) has been omitted from the com_
plete matrix K. The complete matrix is convenient for the computation of stereoscopic
pairs of drawings of objects viewed from the clinographic angle. This subject will be pre-
sented in a later paper.

the left of the origin
this l ine. It may be
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more convenient to compute angles from the vertical in terms of the

tangents. As tan 6 : Dr/ Dz, see Fig. 3, if. Drf Dzis positive S is measured

Frc. 3a. Rhodonite as drawn from matrix calculations.

clockwise from the vertical, counterclockwise if Dr/D, is negative. Slide

rule computations are entirely satisfactory.

Suuuanv

(1) A vector (V)"on the o basis becomes (V)': M(V)" on the r basis.
(2) A vector can be normalized by dividing it by the square root of

the sum of the squares of its components on the r basis.
(3) The cosine of the 6ngle S between two unit vectors (V)" and (W),

is  cos S:  (V) , (W)" .

lh \
(a) The vector( fr | is perpendicular to the plane (hkl) and hence this

\ t  / "

plane has a normal on the r basis of ;

/ , \
( 1 [ r * ) " :  M ' l  k  l .

\ ,  / .

(5) The zon'e symbol fmnpl, derived from any two faces of the zone

Frc. 3

- : - -1 i
i i----{i
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/ * \
by cross multiplication of the face indices, is a vector I n | . lt becomes

\p  / "
on the * basis:

/ * \(v) , :Ml"  l .
\ p  / "

(6) A clinographic projection of a crystal may be made by multiplying
the matrix KM by the zone symbols of the crystal face pairs.


