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ABSTRACT

Three variables may be charted in a triangle by the use of trilinear coordinates, and four
variables in a tetrahedron by means of quadriplanar coordinates. Negative trilinear and
quadriplanar coordinates may also be used to advantage. These unique properties of the
triangle and tetrahedron suggest that similar properties exist for hypertetrahedra of z
dimensions.
' 

By mathematical generalization, it is possible to predict the number of vertices, edges,
triangular faces, tetrahedra, and hypertetrahedra that bound an z-dimensional hypertetra-
hedron. A tabulation of these boundaries, up to the ninth dimension, is given. The number
of vertices in each hypertetiahedron corresponds to the number of variables that may be
charted within it. Hypertetrahedra of 4, 5, and 6 dimensions, having 5, 6 and 7 vertices,
are bounded respectively by 70,20, and 35 triangular faces.

Four variables may be charted in a tetrahedron by constructing geometrically or by
deducing analytically the resulting surface, which may then be shown either in perspective
or by projection as a topographic map. Another method is to develop the tetrahedron onto
a plane, and merely to plot the triads 123, 124,134, and 234, each recomputed to 100
per cent. The first method is inapplicable to hypertetrahedra, and the second method may
not be exactly applied, as hypertetrahedra can not be developed. The triangles bounding
the hypertetrahedra, however, may be arranged empirically, so as to constitute a com-
pound system of trilinear coordinates for charting the triads l, 2... (a-l), 3. . . v,
2 , 3 . . . ( a - 1 ) , 4 . . . a , 3 , 4 . . . ( u - l ) , 5 . . . o , e t c . , w h e r e ? r m e a n s b o t h v e r t i c e s a n d
variables.

Four analyses of platinum metals are used to illustrate the charting of 6 variables on the
20 triangular faces of a hypertetrahedron of 5 dimensions. Variable scales are required for
best delineation of the resulting curves, and methods are given for producing such changes
in scale.

I Published by permission of the Director, U. S. Geological Survey,
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INrnooucrroN

Physical measurements commonly involve three or more components
or variables, and the relations between them are most readily grasped if
they can be shown in graphic form. Numerous systems of 3-dimensional
coordinates have been devised for this purpose, but 3-dimensional rec-
tangular cartesian coordinates are generally used. Any equation in three
variables may thus be charted, but an equation in four variables presents
difficulties. A 3-dimensional surface may be projected orthogonally onto
a plane, thus reducing by one its number of dimensions, and producing a
topographic map. Similarly, but by the use of analytical methods, an
equation in four variables, representing a 4-dimensional continuum, may
be projected into three dimensions; but the resulting representation will
comprise a series of 3-dimensional surfaces, as numerous as the contours
on a topographic map. Graphs of this kind are impracticable for four
variables, and are almost impossible for five or more variables.

All systems of coordinates for charting more than three variables are
impaired by shortcomings of this, or some other kind. Partial success has
been achieved by combining components, by making multiple curves or
diagrams, by the use of nomograms, and by other devices, but restrictions
of some sort are invariably required. One of the limitations that may be
tolerated, particularly in charting chemical analyses, is that the sum of
the variables shall equal unity, or 100 per cent. With this limitation,
three variables may be charted within a triangle, and four within a tetra-
hedron. This unique property, possessed by the triangle and tetrahedron,
is also possessed by hypertetrahedra of z dimensions, so that any number
of components whose sum is unity may theoretically be charted. But it is
impossible to depict graphically such z-dimensional continua, so that
further restrictions and compromises must be made. This paper is an ex-
position of one method for utilizing the concept of hypertetrahedral
charting.

TnrlrNBan aNn QuaonrpLANAR CoonnrNatns

Trilinear coordinates are so commonly used in the graphic representa-
tion of 3 variables that no description of this usage seems necessary. Little
application is made, however, of the analytical geometry of trilinear co-
ordinates, whereby trilinear equations may be written to show relation-
ships between curves that are experimentally derived and graphically
presented. American textbooks on elementary analytical geometry are
particularly reticent on this subject. Two elementary statements and
one complete treatise on trilinear coordinates, all of British origin, are
cited herewith:
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Surtn, Crtenr,os, An elementary treatise on conic sections by the methods of coordinate
geometry. Macmillan & Co., Ltd., London, pp. 341-389 (1919).

LoNnv, SoNnv L., The elements of coordinate geometry: part II, trilinear coordinates.
Macmillan & Co., Ltd., London, 228pp. (1923).

WtilTwontu, Wrr.r.reu A., Trilinear coordinates and other methods of modern analytical
geometry of two dimensions. Deighton, Bell & Co., London, 506 pp. (1866).

Trilinear coordinates are built about any 3 non-parallel non-concur-
rent lines in a plane, which intersect to form a triangle of reference, com-
monly called a trigon. This triangle may have any shape, but both

o (-135, 5, a3$

o 2

POSITIVE AND NEGATIVE TRILINEAR COORDINATES

Frc. 1

graphics and analysis are simplified if an equilateral triangle is used.
Such a trigon is illustrated by Fig. 1. The three coordinates of a point,
written as (a,8,7), are measured on normals to the edges, drawn in the
direction of the opposite vertices for positive values, and in the reverse
direction for negative values. One or trvo coordinates may be negative,
but not three.

If the sides of a trigon are represented as c, b, and c, and its area as
A, it is readily shown that

Any term of any trilinear equation may therefore be multiplied one or
more times by the left side of equation (1), without changing the value
of the equation. Hence all algebraic trilinear equations are, or can be

sa * b0 *-ct
z t  

- : " t ' (1)
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rendered, homogeneous. Thus the general equations for a straight line

and for a conic section are respectively as follows:

l a l m B t n t : 0
aa2 I bfl2 I ct' lZfifu l2ga I zha7 : O.

Trilinear coordinates are readily transformed to rectangular cartesian

coordinates by means of the following formulae:

a : r c o s i l 1 ' y s i n i l - 0 t

0 : * c o s 0 2 l y s i n 0 2 - p z

7 : r c o s 0 z * y s i n 0 a - i t

t ) \

(3)

(4)

where 1r, ?2, and pt arc the trilinear coordinates of the origin of cartesian

coordinates, and d1, 02, and ds are the angles which normals from a point

TRANSFORMATION OF OOORDINATES

Frc. 2

to the sides of the trigon make with the X axis. These relationships are

shown in Fig. 2. For further information on trilinear coordinates' the

reader is referred to the publications cited above.

Quadriplanar coordinates bear the same relation to a tetrahedron as

trilinear coordinates do to a triangle. Commonly a regular tetrahedron of
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reference is used, having equilateral triangular faces. positive coordinates
are measured on a normal from each face in the direction of the opposite
apex; negative coordinates are measured in the reverse direction. one,
two, or three negative coordinates may exist, but not four. All algebraic
quadriplanar equations are, or may be rendered, homogeneous by the
same method heretofore shown for trilinear coordinates; and the trans-
formation to 3-dimensional rectangular cartesian coordinates is made by
the use of four formulae analogous to (2), (3), and (4).

ApprtcerroN or Nncarrvn CoonnrNerps

The point (2, 3, 5) is one of those charted in Fig. 1. Its coordinates
may be considered to represent the composition of a rock composed. of 2
parts quartz, 3 parts feldspar, and 5 parts mafic minerals. Suppose
another rock exists whose composition is 2 parts nepheline, 3 parts feld-
spar, and 5 parts mafic minerals. As quartz and nepheline are incom-
patible, the mode of this alkaline rock might be given as (-2,3, 5). But
the sum of these numbers is 6 instead of 10, wherefore each must be
mul t ip l ied byf  to  produce the t rue coordinates ( -3.33,5,8.33) .  This
point may then be charted, as shown in Fig. 1, to represent the composi-
tion of the alkaline rock. rf in some comagmatic region, other igneous
rocks exist whose modes lie between or beyond the points (2, 3, 5) and
(-3.33, 5, 8.33), they may also be charted, and their loci may be joined
by a fitted curve whose trilinear equation can be written with reference
to the trigon ,48C. This would not be possible if the alkaline rocks had
been charted with reference to a contiguous trigon, say ACD.

The expansion shown above, to obtain coordinates whose algebraic
sum equals 10, is more generally accomplished by multiplication by
L/[8, where Z is the number of divisions into which each side of the
trigon is divided, and [s] is the absolute value of the algebraic sum of
the original ratios of the mode. Attention is called to the lact that a, B,
and 7 become points at infinity if S:0. The original ratios may be re-
covered from the expanded coordinates by means of the equation

- : -  L o  
-'  

[ . ] +  [ p ]+  [ y ]
where r refers to one of the three original ratios of the mode, and a refers
to its coordinate. Similar formulae, of course, are used. for s and l, the
other two ratios of the mode, and for B and, "y, their derived coordinates.
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shown in the following example. The six platinum metals' when analyzed'

are first treated in hot aqua regia, but an insoluble residue remains that

must be fused with a flux. The soluble and insoluble fractions are sepa-

rately analyzed, and are afterwards combined in proper proportions to

girre ihe complete analysis. The soluble fraction contains platinum' irid-

ium, rhodium, and paliadium; the insoluble fraction contains platinum'

iridium, rhodium, oimium, and ruthenium' Palladium is thus absent from

the insoluble fraction, and osmium and ruthenium are absent from the

soluble fraction. The analysis of the soluble fraction may be charted in

quad.riplanar coordinates as a point within a tetrahedron of reference

whose vertices are Pt, Ir, Rhf and Pd' By combining the hexagonal

elements osmium and ruthenium, and considering them as incompatible

with palladium, the component Os-Ru may be plotted as negative in re-

lation to the vertex Pd. Thus the analysis of the insoluble fraction may be

represented as a point outside the same tetrahedron of reference. A series

of such analyses can therefore be represented as two surfaces, one inside

and. the other outside the tetrahedron; and thereafter both surfaces may

be shown as topographic maps. Similarly six variables may be charted in

quadriplana. .ooiaittut"s, ii two pairs of variables are incompatible;

and seven variables may be charted if three pairs are incompatible'

HvPenrnrneHEDRAL CnanrrNc

From the properties of the triangle and the tetrahedron, it follows by

mathematical induction thaf n variables may be charted in hyper-

tetrahedra of z-1 dimensions. The boundaries of such hypertetrahedra,

uo to the ninth d,imension, are shown in the following tabulation:

Boundaries Fourth Fifth Eighth Ninth

Vertices
Edges
Triangles
Tetrahedra

Hr
H6
Ho
Hz
He
Ho

9
36
84

126
t26
84
36
9
I
0

8
28
56
70
56
28
8
1

0
0

7
2 l
J J

2 l

1
I

0
0
0

6
15
20
I J

6
1
0
0
0
0

(
10
10
5
I
0
0
0
0
0

10
45

r20
zto
252
2to
t20
45
10

I

In this tabulation, I!, Hs, etc. refer to hypertetrahedra of the fourth' 6fth' and higher

dimensions.

DrMrwsroNs ot HrrPnnrertArrEDRA
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F O U R  A R R A N G E M E N T S  O F  T E N  T R I G O N S

Frc. 3
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The simplest arrangement for the 10 triangles I23, 124, l2S, I34, l3S,t45,234,235,245,  and 345 is  in  rows and columns,-"s  i '  a  rectangulararray, but such an assembry wourd be uneconomical of space, and wourd' show no relationships between adjoining triads. when assembled as asingle diagram, however, some choice stit exists in the 
"*u"*"-.", 

ortrigons, but conservation of space rargely eriminates such choiie. Figure3, for example, shows 4 ways in whic-h it 
" 

ro trigons mentioned above
Tay be arranged. Arrangements C and D requirelore space than A orB, and therefore for a diagram of given size, the trigons of C and D wouldhave to be smaller' Arrangements l and B havethe same size and. shape,but '4 preserves one developed tetrahedron, whereas B does not. Arrange-ment,4 is obviously the best one.

The hypertetrahedra of higher dimensions show further dificulty inthe utilization of quadriplanar coordinates. rt will be noticed, as thenumber of variables increases, that the number of bounding tetrahedraincreases faster than the number of bounding triangles, so that the raborof charting 'surfaces increases progressively. Thus for 7 variabies, thenumber of tetrahedra equals the number of triangles; but for more than 7variables, the tetrahedra are more numerous tt an tt e triangles. Rtt ,t 
"r"considerations have impelled the writer to the use of compound systemsof trilinear coordinates, wherein the bounding triangles 

"r. 
sho*n ontyonce.

Tnr Cnenrs
Figures 4, 5, and 6 show the most compact arrangements of the tri-

hedra of 4, 5, and 6 dimensions; and
:spectively, of 5, 6, and 7 variables.
s computed to total unity, or 100
iads are also recomputed to unity.
r respective trigons.
I of charting is scale. Certain sets of
re scale, whereas others, plotted at
nct relationships. This is overcome
n scale of the ordinates or abscissae.
.ily occurs in trilinear coordinates.

s o n ea r t o o n e an o th er tha t tr, ",. *rti,l g'*ll: t*:: :T:,i rllllii,illtir:inspec-tion' Amplification of the ..rrrr"' i, 
-rrr"refore 

desirable, but suchamplification must not result.in the charting of points outside the irigonin which their coordinates belong. The accJmphshment of this objectiveis found, to depend upon the miiimum value of the largest coordinatesamong the sets to be charted within a single trigon.
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The relationship between magnification and coordinates is given by

the following formula:

M r - M + 1 : 0  ( 5 )

where M is the possible magnification of scale, and r is the minimum

value of the largest coordinate in a number of sets' Thus it may happen

that the minimum value of the largest coordinate in several sets is not

Iess than .80, from which it follows that the maximum amplification of

scale is 5. Attention is directed to the fact that it is immaterial whether

the largest coordinates in the sets are a, B, or "Y, or a mixture oI these'

Some of the possible magnifications are shown below:

Possible
Magnification (M)

M:lO0
50
25
I 5

10
9
8
1

6
\
4
J

2
i t
t ,

Minimum Value of

Maximum Coordinates (r)

rZ.990
.980
.960
.933
.900
.889
. 6 / 5

. 6 J /

.833

.800

.750

.667

.500

.333

The value of a magnified maximum coordinate is obtained from the

following formula:

V : L M C - L C M - | )  ( 6 )

where C is the numerical value of the maximum coordinate, Z is the

number of divisions of each side of the trigon, M is the magnification,

and 7 is the required value of the maximum coordinate in the magnified

sca le .  Thus ,  i f  C :a : . 824 ,  L :20  (as  i n  F igs .4 ,5 ,  and  6 ) ,  and  M:5

(as indicated from the preceding tabulation), the value of tr/ will be 2'4

divisions of the scale. The value of the magnified minor coordinates is

obtained from the equation:

t = L M c

where c is the numerical value of either of the minor coordinates, and o

is the required value of a minor coordinate in the magnified scale'

Magnification of scale is commonly necessary. Each trigon, however, is

a separate and distinct unit, so that the methods of trilinear analytical
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geometry may be applied within trigons, but not from one trigon to
another. Therefore no objection exists to showing difierent trigons at
difierent scalesl and where this is done, the magnification is given as a
single large numeral within the trigon. Magnification of scale is imprac-
ticable where negative coordinates are utilized.

An example of the charting of 6 variables is shown in Fig..7. For this
purpose, four analyses of platinum metals, taken from a report by the
writer2 are used, each of which is a mean of a number of analyses. The four
analyses are shown at the left of the subjoined tabulation, followed to the
right by all possible triads recomputed to unity. All but one of the 20
trigons are used at magnified scales. curves have been drawn through
the charted points, to show the modes of variation; and arrows have been
placed on the curves to show the relative positions of the four analyses.

Rfsulr6

A method is shown for charting 5, 6, and 7 variables on the triangular
faces of hypertetrahedra of 4, 5, and 6 dimensions. The triangres repre-
senting these faces are empirically arranged for the maximum conserva-
tion of space. The variables are computed into triads, each of which

2 Mertie, J. 8., Jr., The Goodnews platinum deposits, Alaska: U. S. Geol. Swztey, Btdt.
9r8,77-79 (1940).




