OLIVINE X-RAY DETERMINATIVE CURVE

H. S. YODER, JR., Geophysical Laboratory, Carnegie Institution of Washington, Washington, D. C.

AND

TH. G. SAHAMA, Institute of Geology, Helsinki, Finland.

ABSTRACT

The (130) spacing of 31 chemically analyzed natural olivines and seven synthetic olivines has been measured. A determinative curve has been calculated from 26 of the chemically analyzed natural olivines:

Fo (mol %) = $4233.91 - 1494.59 d_{130}$.

The fictive end points are d_{130} (Fo=100)=2.7659 and d_{130} (Fo=0)=2.8328. The error attached to an individual measurement ranges from 3 to 4 mol per cent, depending on the composition.

Portions of the powder x-ray diffraction patterns for synthetic forsterite and synthetic fayalite have been indexed. The cell constants, density, and molar volumes are given.

INTRODUCTION

The composition of members of the forsterite-fayalite series may be estimated by measuring the indices of refraction, 2V, or density in lieu of a chemical analysis. The index of refraction and 2V determinative curves of Poldervaart (1950, p. 1073) or Winchell and Winchell (1951, p. 500) are usually used for this purpose. Some prefer to use the index of refraction determinative curve of Bowen and Schairer (1935, p. 197) based on six synthetic olivines, and still others use the 2V tables of Tomkeieff (1939, p. 235), based on Winchell's (1933, p. 191) earlier compilation. Bloss (1952, p. 974–975) gives a determinative curve based on density, using 30 measurements from the literature. It is the purpose of this paper to present a curve for estimating the composition of members of the forsterite-fayalite series using powder x-ray diffraction data.

Method of Investigation

Certain parameters in the structure of olivine vary with composition. These variations may be studied by measuring in a powder x-ray diffraction pattern either the absolute position of reflections or the separation of two reflections from olivines of known composition. The absolute position of a reflection may be determined by measuring the angular separation between the reflection of the olivine and the reflection of an admixed substance whose parameters are known. A plot of either of these data against composition provides a possible means of estimating the composition of unknown olivines.

The measurement of the absolute position of a single reflection was chosen on the basis of the following requirements. (1) A reflection of

$2\theta_{obs}$	$Q_{obs} imes 10^5$	$\Delta Q \times 10^{5}$	hkl	Ι	d
17.410	3,854	-6	020	26	5.094
20.605	5,382	1	110	3	4.310
22.915	6,640	6	021	95	3.881
23.900	7,214	5	101	39	3.723
25.475	8,180	1	111	13	3.496
25.620	8,272	-3	120	12	3.477
29.865 (α_1)	11,191	-3	002	41	2.989
32.365	13,070	9	130	51	2.766
35.775	15,875	2	131	>100	2.510
$36.560 (\alpha_1)$	16,583	-8	112	>100	2.456
$38.345(\alpha_1)$	18,180	10	041	18	2.345
$38.870 (\alpha_1)$	18,661	-15	210	8	2.315
39.755	19,453	8	122	50	2.267
40.095 (α_1)	19,808	5	140	48	2.247
41.825 (α_1)	21,475	-31	211	33	2.158
44.560 (α_1)	24,232	39	132	20	2.032
46.800 (α_1)	26,585	-1	042	8	1.940
$48.535(\alpha_1)$	28,471	0	150	10	1.874

TABLE 1. POWDER X-RAY DIFFRACTION DATA FOR SYNTHETIC FORSTERITE (P-2)

 $2\theta_{obs}$ in degrees: CuK α $\lambda = 1.5418$ CuK $\alpha_1 \lambda = 1.54050$ $Q = 1/d^2$

d = interplanar spacing in Å

 $\Delta Q = Q_{calc} - Q_{obs}$

I = relative intensity based on arbitrary scale

high intensity throughout the compositional range was sought for two reasons: (a) the intensity diminishes for certain wave lengths of x-radiation (e.g., Cu) with increasing iron content; (b) the amount of olivine in an unknown sample may be small and the intensity will be proportionally reduced. For a high intensity reflection, therefore, olivines need not be carefully separated. In fact it has been found possible to obtain a suitable x-ray pattern from a thin slab or a thin section (with cover glass removed) of some olivine-bearing rocks. (2) The reflection must be resolved clearly from neighboring reflections throughout the range of composition and should be readily distinguishable from those of commonly associated minerals such as plagioclase and pyroxene. (3) The reflection should vary continuously throughout the composition range, preferably uniformly, at a rate suitable for a precise estimate of the composition.

The indices of the observed reflections in the low-angle region for a synthetic forsterite and a synthetic fayalite are given in Tables 1 and 2, respectively. The space group is Pbnm (Bragg and Brown, 1926), and the cell dimensions obtained from the powder x-ray diffraction data in Tables 1 and 2 are:

OLIVINE X-RAY DETERMINATIVE CURVE

	Synthetic forsterite	Synthetic fayalite
a	4.756 ± 0.005 Å	4.817 ± 0.005 Å
Ъ	10.195 ± 0.005 Å	10.477 ± 0.005 Å
с	5.981 ± 0.010 Å	$6.105 \pm 0.010 \text{ A}$

These values are in accord with those published by Rinne (1923, p. 236) and Winchell (1950, p. 14) for samples close to the end members. The density obtained from the cell volumes is 3.222 for forsterite and 4.392 for fayalite. Bloss (1952) gives 3.217 and 4.36 for pure natural forsterite and pure natural fayalite, respectively.

The above requirements appear to be satisfied for the most part by the (130) reflection. It may be noted that none of the adjoining pairs of intense reflections (e.g., 131 and 112) satisfies the conditions desired.

The measurement of the spacing of the (130) reflection was performed in the following way. The sample was ground in an agate mortar under acetone, and about 10 mg. of the olivine powder was mixed with 1-2 mg. of pure silicon powder on a glass slide. A few drops of a very weak solution of lacquer in acetone were added, and then the powder was stirred into a thin film on the slide. The slide was mounted on the Norelco Geiger-counter focusing diffractometer, and records were made on a scale of 1 inch per degree 2θ . The divergent and scatter slits were 1°, receiving slit 0.006 inch, and the scan speed was $\frac{1}{4}$ ° per minute. The positions of

 $2\theta_{obs}$	$Q_{obs} imes 10^5$	$\Delta Q \times 10^{5}$	hkl	I	đ
 16.920	3.642	2	020	16	5.240
20.245	5,197	24	110	8	4.386
22 365	6.328	-1	021	14	3.975
23 515	6.987	6	101	7	3.783
25.050	7 914	-10	111	75	3.555
29,260	10, 735	-4	002	11	3.052
31 620	12 491	18	130	100	2.829
34 225	14 568	8	040	22	2.620
34 075	15 195	-3	131	60	2.565
35 015	15,995	-42	112	80	2.500
37.340	17,244	$\begin{cases} 15\\ -4 \end{cases}$	$\begin{cases} 041 \\ 200 \end{cases}$	35	2.408
38 300	18 108	43	210	18	2.350
30,080	18 874	62	140	35	2.305
41 205	20 837	-3	211	12	2.191
43.650	23,259	-18	132	6	2.074

TABLE 2. POWDER	X-RAY	DIFFRACTION	DATA	FOR	Synthetic	FAYALITE
-----------------	-------	-------------	------	-----	-----------	----------

 $2\theta_{obs}$ in degrees CuK α $\lambda = 1.5418$ d = interplanar spacing in Å

 $\Delta Q = Q_{calc} - Q_{obs}$

I = relative intensity based on arbitrary scale

the olivine (130) reflection and the silicon (111) reflection were then measured to $0.005^{\circ} 2\theta$ by a vernier rule. The following standard values of 2θ in degrees for the (111) reflection of silicon were used (Philips Laboratories):

	$\mathbf{K}_{\boldsymbol{lpha}}$	$K\alpha_1$
Cu	28.465	28.440
Co	33.175	33.150

The position of the olivine reflection was corrected by means of the silicon reflection and the absolute value obtained. The d_{130} values were calculated using 7-place sine tables (Peters, 1918) and the wave lengths for Cu and Co radiation given by Bragg (1947, p. 27).

Four to 12 records of natural and synthetic samples were made by Yoder, using Cu radiation in the region $33-28^{\circ} 2\theta$. Five or six records of 17 of the natural samples were made using identical apparatus with Co radiation in the region $38-33^{\circ}$ and measured independently by Sahama. These independent data permitted an estimate of operator error since the same sample of silicon powder was used and the same procedures were employed by both authors.

DESCRIPTION OF SAMPLES

Thirty-one analyzed natural and seven synthetic olivines were x-rayed with the Si internal standard. The locality and source of the natural samples are given in Table 3. Chemical analyses of the natural olivines are listed in order of increasing Fo (mol %) content in Table 4. The source and reference to the synthetic samples may be found in Table 5.

The Mg₂SiO₄ content, Fo, of the natural samples was calculated in the following way. The H₂O, F, and alkalies were neglected and the remaining oxides divided by their equivalent weights as given by Stevens (1946, p. 109). These equivalents are adjusted to equal the total of eight anion equivalents of the olivine structure. The resulting numbers are then divided by their respective valence to give the atoms per formula. The Fo content is obtained from the ratio Mg/X of atoms per formula X_2 SiO₄. In the past the composition of an olivine has been given on the basis of its iron content, Fa, or if the manganese content, expressed as tephroite, is known and appreciable the composition is recorded as Fo_x-Fa_yTe_z. In view of the problems involving the oxidation of iron and manganese, it was considered more appropriate to give the composition in terms of the single-valued component, Fo.

The natural olivines are usually of relatively simple composition (Fo+Fa>95%) and are, therefore, amenable to the measurement of a single parameter as an estimate of their composition. However, Ca, Al, Fe⁺³, and Mn may enter the olivines in measurable amounts. Although

OLIVINE	X_RAV	DETERMINATIVE	CURVE
ULIVINL	V-VUI	DELERMINALIVE	001012

	1-1-1-1-V	The second					Maasure	ments of	e(130). 4	verage in	parenthe	1es.		đ	0	110041-120
10 ×	sample No.	No.	Source	Locality	Occurrence		Curror (Toder)			COKCK1 (Sahama)		Toder	Sahama	*** ⁴ 130
0	USINGO458	18	G. Switzer	Rockport, Mass.	permative in hornblends-blotite	31.605	31.610 31.595	31.600 31.595	31+590 (31+600)	36.830 36.835	36.840	36.850	(36,840)	2.813	2.8307	2.8310
2.6	8CLJ39	10_34	I. D. Muir, L. R. Wager	Sknergaard Intrusion, Kangerdlugseusk, East Greeniand (2500 metare)	olivine-quartz gabbro of layered intrusion	31.615 31.630 31.640	31,620 31,605 31,630	31,620 31,625	(31.625)	36. <i>8</i> 70 36. <i>8</i> 75	36.880 36.865	36.880 36.870	(36,875)	2,8291	2.8280	2.8286
5.5	Ω,	72	Th. G. Sahama	St. Uttervika Mage. Tumabarg. Söderman- land, Seeden	eilystte	31-615 31-625 31-620	31.615 31,615 31,615	31.610 31.620 31.620	(31,615)	36.855 36.840	36•840 36•865	36.845 36.860	(36.850)	2,8300	2,8320	2,8310
19.2	1/164	17	I. D. Muir	Seaver Bay, Minn.	iron-rich distance of sill-like intrusion	31.740 31.740 31.760	31.750 31.745 31.750	31.750	(31-745)					2.61.67	I	2,81.67
20.2	977710 3	10,34	I. D. Muir, L. R. Wager	Magerguard Intrusion, East Greenland, East Greenland (2100 maters)	olivine-quarte gabbro of layared Intrinsion	31.730 31.705	31,720	31.705 31.715	31.725 (31.715)		ſ			2,6213	I.	2,8213
26.3	I	N.P.*	I. D. Muir	Garbh Zilean, Shiant Islands (320 feet above sea level)	olivina-rich dolarita, part of sill	31.765 31.750	31.765 31.765	31.755	(31.760)		1			2,8174	I	2.8174
32.3	ET6 TUNISN	18	G. Switzer	Monroe, Grange Co., N. Y.	with magnetite and calcite	31.935 31.935 31.915	31.955 31.920 31.930	31.930 31.920 31.930	(31.930)	37.205	37.220 37.205	37.205 37.225	(37,210)	2,8028	2-8035	2,8032
2.66	FEAMI21	N.P.	K. Hytonen	Horoto, Uganda	clivine distane	31.890 31.870	31.870	31.870	(31.875)	37.135 37.150	37.160 37.150	37.145	(37+150)	2.8075	2,8079	2.8077
40°0	106 تتتع	10,34	I. D. Muir, L. R. Wager	Bkaergard Intrusion, Kargerdugesuak, East Greenland (1800 meters)	ultyine-quarte sabbro in layared	31.815 31.815	31.815 31.815	31.810 31.815	(31.85)		1			2.8126	1	2.8126
44.6	1	30	I. D. Muir	Camas Mår, Muck	olivine gabbre	31-920 31-935 31-905	31.920 31.915 31.930	31.910	(31,920)					2,8036	1	2+8036
53.9	ы	ส	The G. Sahama	Susimeki, Yampula, Finland	mognetite-Almenite olivinite	32.010 32.015 32.005	32,005 32,005	32.010 32.005	(32,010)	37.310	37.310	37.335 37.315	(37.315)	2.7959	2+7959	2.7959
55.6	Α	ส	Th. G. Sahama	drainage channel of Lake Laistilänjärvi, Nakkila, Finland	diabase	32.005 31.985 31.990	32.000 32.015 32.025	32.000	32.005 32.025 (32.005)	37.305	37.310	37.310 37.325	(37.310)	2.7964	2.7963	2.7964
61.3	FEAE62	N.P.	Th. G. Sahama	between Me. Muhavura and Mt. Mgabinga, el. 9000 ft., Buffumhfra, Uganda	phenocrysts in kivite	32.070	32.070	32-060	(32,065)	37.345	37.345 37.375	37.355	(37,360)	2.7913	2.7927	2.7920
62.2	FEAE66	W.P.	Th. C. Saham	Nyarustas, Bufumbling, Uganda	phenocrysts in diabase	32.060 32.030	32.040 32.045	32°015	(32,040)	37.385	37+385	37.385	(37*385)	2.7934	2.7908	2.7921
1.63	504077	10,34	I. D. Mair. L. R. Wager	Skaergaard Intrusion, Kangerdingsstak, East Greenland (500 meters)	alivine-hyperathana gabhro of layered intrusion	32.025 32.015 32.025	32.025 32.010 32.025	32.030 32.015 32.025	(32,020)		·	.		2°7951	I	2.7951

TABLE 3. X-RAY MEASUREMENTS OF NATURAL OLIVINES

479

_
g
0
- 23
è
. *
.0
~
2
0
7.5
\sim
~
1
- 02
(±)
- 74
- 13
>
- 5
드
\cap
\sim
. 7
- H
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- 14
- b
- E
-
1
-
See.
- 14
0
-
10
- 24
· 7
- 53
- 14
- 19
머
- 22
H
b
- 52
- 01
<.
- T-3
- 144
-
~
1000
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~
_
- A - 1-
R
. 1
~
143
ㅋ
i
- PA
-
~

	av- d130	2.7882	2.784.5	2.7816	2.7799	2.7786	2.7738	2.7757	2,7746	2.7736	2.7728	2.7723	2.7730	2.7720	2.7718	2.7718	2.7689
	Saltana	2.7877	1	1	I	2.7791	2.7741	I	2.7751	2.7737	2.7720	-1	2.7732	2.7720	2.7712	2.7718	2.7680
e19	Yoder	2.7887	2.7845	2.7816	2.7799	2.7782	2.7736	2+7757	2.7740	2.7736	2.7736	2.7723	2.7727	2.7719	2.7723	2+7719	2.7698
		(0€7*6)				(37.550)	(37.620)		(37.605)	(37.625)	(37.650)		(37.625)	(37.650)	37.655 (37.660)	(37.645)	(37.705)
.8965.	Sehane)	37.445 37.4430				37.555 37.545	37.630		37.605	37-625 37-635	37.640 37.665		37.635 37.615	37.655 37.640	37.650	37.655	37.700
n parenth	Cold 1 (37.420	I	1	1	37.555	37.625 37.615	1	37.610	37.625 37.620	37.650 37.650	ł	37.625 37.610	37.645	37.660	37.630	37.720
Average 1		37.415				37.555	37.630		37.615 37.600	37.625 37.630	37.645		37.635 37.620	37.645 37.650	37.660	37.645	37.710 37.690
28(130).		(32.095)	32.130 (32.145)	(32,180)	32 . 205 (32.200)	(32+220)	(32=275)	(32.250)	(32,270)	32.260 32.285 (32.275)	32.265 (32.275)	32+290 (32+290)	(32,285)	32.290 32.315 (32.295)	32.295 32.295 (32.290)	(32,295)	32-320 32-315 (32-320)
ments of	Yoder)	32,080	32.145 32.160	32.195 32.180	32.190 32.210	32,230	32°270 32°285	32.255	32,270	32+290 32+280	32.280 32.280	32°275 32°305	32.285 32.310	32.295 32.295	32.280 32.285	32.310	32.325
Near	Cake. (32.105 32.110	32.150 32.120	32.175 32.180 32.180	32.190 32.210	32+215	32°285 32°290	32.275 32.235	32,250	32.270 32.270	32.275 32.270	32+280 32+305	32,285 32,280	32•290 32•300	32+300 32+290	32.295	32.320
		32.080 32.090	32°155 32°145	32.170 32.185 32.175	32 .19 5 32.205	32.220	32.270 32.260	32.240	32°280 32°275	32.270 32.285	32.290 32.275	32,300	32°275 32°285	32.295 32.300 32.280	32.295 32.295	32,310 32,280	32.330
_							_			_			_	_			
	Occurrence	phenocrysts in diabase	phonocrysts in mullite baselt	picrodolerite part of sill	picrite, base of sill	phenocrysts in volcanic limburgite neck	meteorite	phenocrysts in mellilite busalt	phenocrysts in ugandite	meteorite	nodule in basalt .	intrusive picrite sheet.	dunite	Volcanic bomb	module in baselt	serpentinized peridotite	limestone, with clinohumite
	Locality	Gongo frontise on the phenocrysts in disbase road, Bafambira, Uganda	Liaarvoogda, Parmo Soedemood Annexe, Robertson Districts, South Africa	Garth Ellaam Sill, Shant Telanda (38 fr. above sea Level)	Garbh Eilean Sill, Shiant Lalands (see level)	Marulinga, Karamoja, phenorrysts in volcanic Uganda	Alies Springs, meteorite Australia	Spiegel River, Rivers- phenocrysts in mellilite besalt dal District, Cape Fredine, South Africa.	Muico Flow, Rubanda phenocrysts in ugandite Area, Uganda	Marjalahti, Finland meteorite	Ishinomegata, Aidta nodule in basalt . Frefeture, Japan	Ubskendt Island, West Intrusive picrite sheet.	Ulterithal, Tyrel, dunite dunite	Dreis, Mifel, volcanic bomb Germany	Sait Lake Crater, nodule in besalt Cahu, Eawait	Noumma, New Caledonia serpentinised peridotite	Ojame, Lohja, Finland limestone, with clinchumite
	Source Locality Occurrence	Th. C. Sahama Congo frontiar on the phenocrysts in disbase read, Bufumbira, Uganda	 R. Notoloda Rimarwoogis, Farm Destemble Airman, Reserven District, Appe Forvine, South Africa 	R. Johnston Gartha Ellasm S11, picrodolarita part of sill Siant Lands (38 Fr. shows ass large)	R. Johnston Garbh Eilsan Sills picrite, base of sill Scint Zishan (san Level)	K. Hytönen Moyellings, Karamaoja, phenorrysts in volcanic Uganda,	M. H. Hey Allen Springs, meteorite	S. R. Mockolde Spiegel River, Rivers- phonocrysts in mallille basalt Textures, Cope Provides, South Africa	Th. G. Sahama Muxo Flows, Ruhanda phenocrysts in ugandite Areas, Uganda	Th. G. Sahama Marjalahti, Finland meteorite	C. S. Ross [Inhinomegata, Arita nodule in basalt . Frefesture, Japan	R. Johnston Ubskendt Island, West intrusive picrite sheet. Greenland	Th. G. Sahama Ultenthal, Tyrol, dunite Austria	Th. C. Sahama Dreis, Mifel, volcarie bomb Germany	C. S. Ross Balt Lake Creter, notule in besuit Owin, Exert.	C. S. Ross Nouman, New Caladonia serpentinised peridotite	Tr. G. Sahama Djame, Lohtja, Finland limestore, with clicohumite
Reference	No. Source Locality Occurrance	N.P. Th. C. Shhama Conge frontiar on the phenocrysts in dishase read, Bailwhilin,	15 3. R. Nockolds Klaarwoogfs, Farm phenocrysts in mullite basalt Generation furners, Reservant District, Appe Forwines, South Africa	N.P. R. Johnston Gavid Eilaan Sill, picrodolarite part of sill (see 13) [38 F. shows ass 18 F. shows ass 1 real)	N.P. R. Johnston Garwh Eilann Sill, picrite, base of sill Sinnt Tallants (mai level 2)	N.P. K. Hytönen Morulings, Karamoja, phenocrysta in volcanic Uganida	28 M. H. Hey Alice Springs, unteorite	15 S. R. Mockolde Spiegel River, Rivers- phonocrysta in mallille basalt Thain Districts, Oppa Providos, South Africa	N.P. 77, G. Sahama Muno Flow, Rainanda phenocrysts in ugandite Area, Uganda	24 Th. G. Suhama Marjalahti, Finland meteorite	22 C. S. Ross Ishinomegata, Arita nodule in basalt . Fredesture, Japan	11 R. Johnston Ubskendt Teland, West intrusive picrite sheet.	24 Th. G. Sahama Ultenthal, Tyrol, dunite dunite	24 Th. G. Satama Dratis Kifel, volcaric bomb Garanty	22 C. S. Ross Bait Lake Creter, notule in basalt Obit, Tasail	22 C. S. Ross Noumman, New Caledonia serpentinised peridotite	23 Th. G. Sahama Ojamo, Lohtja, Finland limestore, with clicohumite
Original Reference	sample No. No. Source Locality Occurrence	FSAE74 N.P. Th. G. Sahama Gange from the phenocrysts in dishase read, Bailwailes,	- 15 S. R. Notoloda MLaarroogds, Farm phenocrysts in mullite basalt Generation Annews, Reservance Justific, Appe Foreines, South	II N.P. R. Johnston Gavit Ellawa SUL, picrodolarite part of sill (see 13) [38 F. shows ass [38 F. shows ass head)	I N.P. R. Johnston Garth Eilann Sill, picrite, base of sill (see 13) (as light Livel) (as light	Fikel.39 N.P. K. Hytönen Merulings, Karamoja, phenorysta in volcanic Uganda Linburgite neck	B40932.9 28 M. H. Hey Allter Surings, meteorite Australia	15 S. R. Nockolde Spingel River, Rivers- phenocrysta in mallille basalt Teaching South Startet, Cape President South Article South	FEAE26 N.P. Th. G. Sahama Maxoo Flow, Muhanda phenocrysts in ugandite Area, Uganda	0 24 Th. G. Sahama Marjalahti, Fihiland meteorite	7 22 C. S. Ross Inhinomegata, Abita Indule in basalt . Prefeature, Jupan	1Π R. Johnston Ubselemut Island, West intrusive picrite sheet.	B 24 Th. G. Sahama Ulterthall, "Yrch, dunite dunite	A 24 Th. G. Skhama Dreis, Kifel, volcaric bomb Garanary	8,030053948 22 C. S. Ross Sait Lake Creter, notule in besait Only, Healt	14 22 C. S. Ross Noumma, New Caledonia serpentinized periodite	150 23 Th. G. Sahama Ojamo, Lohda, Finland limeetore, with clicohumite

H. S. YODER, JR., AND TH. G. SAHAMA

480

"M.P. - chemical analysis not published.

there appear to be narrow limits within which the first three atoms may substitute, Mn is known to form a complete series of solutions, fayalitetephroite. For these reasons certain restrictions had to be placed on the composition of olivines used to construct the determinative curve. Only specimens whose analyses satisfied the following specifications of atoms per formula were considered suitable for a determinative curve:

Si:	0.97 - 1.03
X:	1.93-2.04
Mn:	0-0.03

TABLE 4. CHEMICAL	ANALYSES	OF	NATURAL	OLIVINES
-------------------	----------	----	---------	----------

Fo mol %	Theoret- ical 0.0	0.0	2.6	5.5ª	19.2	20.2 ^b	26.3°	32.3	39.7	40.0	44.06
Si02	29.48	30,08	30.15	29.96	30.42	31.85	31.56	33.77	34.08	33.72	34.04
T102		n.d.	0.20	0,00	1.20	0.01	0.41	n.d.	0.04	tr.	0.43
A1_203		n.d.	0.07	0.00	0.50	tr.	0.79	n.d.	0,00	nil	0.91
Fep03		n.d.	0.43	0,00	nil	0.11	n.d.	n.d.	0.27	0.05	1.46
FeO	70.52	68.12	65.02	63.31	57.62	58.64	53.64	47.26	47.30	47.91	40.37
MnO		0.72	1.01	4.40	n.d.	0.85	0.56	4.54	0.65	0.41	0.68
MgO		n.d.	1.05	2.23	8.17	8.49	11.39	13.88	17.83	18.07	20.32
CaO		n.d.	2,18	0.10	1.32	0.18	0.85	n.d.	0.00	nil	0.81
Н₂0*		\ \	n.d.	0.00	0.18	n.d.	0,16	1	0.05	n.d.	0.09
H20-		0.88	n.d.	0.00	0.21	n.d.	0.06	} 0.48	0.00	n.d.],
Total	100.00	99.80	100.11	100.00	99.62	100.13	99.42	99.93	100.22	100.16	99.11
Fo mol %	53.9 ^d	55.6 ^e	61.3	62.2	63.1	68.1	73.9	76.4	78.0	80.6 ^f	80.8
	35.31	35.84	36.25	36.28	38.11	37.76	37.33	37.93	38.07	38.53	37.24
T102	0.00	0.00	0.00	0.00	tr.	0.00	0.09	tr.	0.07	0.04	nil
Al ₂ O ₂	0,00	0.00	0.14	0.10	nil	0.04	0.18	0.11	0.03	0.74	n.d.
Feg02	1.70	1.99	0.64	0.00	0.15	0.40	1.60	0.02	0.01	0.67	n.d.
FeO	36.91	35.18	32.60	32.90	31.48	27.66	21.58	21.70	19.95	16.60	16.92
MmO	0.53	0.60	0.26	0.22	0,22	0.11	0.27	0.16	0.25	0.27	n.d.
MgO	25.55	26.39	30.04	30.75	30.50	34.05	38.13	40.40	41.20	43.15	43.88
CaO	0.00	0.00	0.12	0.05	0.02	0.16	0.38	0.17	0.27	0.00	1.20
H20 ⁺	0.00	0.00	0.00	0.00	n.d.	0.00	0.17	n.d.)	0.00	n.d.
H_0	0.00	0.00	0.00	0.00	n.d.	0.00	0.04	n.d.	} 0.03	0,00	n.d.
Cro02	0.00	0.00	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
PoOs	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.09	n.d.	n.d.	n.d.	n.d
NaoO)	1	n.d.	n.d.	n.d.	n.d.	0.03	n.d.	n.d.	n.d.	n.d
K20	0.00	\$ 0.00	n.d.	n.d.	n.d.	n.d.	0.05	n.d.	n.d.	n.d.	n.d
Total	100.00	100.00	100.05	100,30	100.48	100.18	99.94	100.49	99.88	100.00	99.3

Fo mol %	85.6	87.4	87.8	88.4	88.6 ^g	89.9 ^h	90.1	90.4	91,1	94.7	Theoret- ical 100.0
Si02	39.12	40.90	40.24	40.30	39.81	40.72	40.60	40.87	41.32	41.07	1.2.60
TiO2	0.09	0.00	0.00	0.15	tr.	0,12	0.00	0.02	0.01	0-05	42.007
A1203	0.58	0.25	0.01	0,25	nil	0.09	0.20	0.07	0.00	0.56	
Fe203	1.69	0.66	0.68	0.00	nil	0.10	0.96	0,00	0.30	0.65	
FeO	10.76	10.73	10.92	10.26	10.20	9.48	8.35	8.72	7.49	3.78	
MnO	0.16	0.20	0.28	0.09	0.13	0.13	0.16	0.15	0.15	0.22	
MgO	46.51	46.96	48.08	48.60	49.03	49.52	49.60	49.78	49-56	54.06	67 21
CaO	0.48	0.14	0.00	0.07	0.75	0.00	0.00	0.07	0.29	0.00	27+31
H20*	0.21	0.06	0.00)	n.d.	0.00	0.00	1)	0.05	
H20-	0.07	0,00	0.04	0.33	0.04	0.02	0.04	0.05	0.60	0.00	
2	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	nede	, n.d.	, nd	0.00	
² ² ⁰ 3	n.d.	n.d.	0.07	0.03	n.d.	0.03	0.03	0.02	0.0/		
205	0.07	n.d.	n.d.	n.d.	n.d.	n.d.	Dada	n.d.	0.04	n.c.	
a20	0.15	n.d.)	0.04	n.d.))	0.01	0.01	n.d.	
20	0.06	n.d.	0.00	0.03	n.d.	0.00	0.00	0.00	0.01	n.a.	
10	n.d.	n.d.	n.d.	0.41	n.d.	nede	, n.d.	0.21	0.00	n.d.	
00	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.013	0.011	n.d.	
otal	99+95	99.90	100.32	100.56	99.96	100.21	99.94	100,11	100.09	100.15	100.0

TABLE 4. CHEMICAL ANALYSES OF NATURAL OLIVINES-(Continued)

a. Corrected for an estimated 1% magnetite.

b. Analyzed specimen was incorrectly referred to as EC4145 (Wager and Deer, 1939, p. 73). See Wager and Deer (1939, p. 71) and Deer and Wager (1939, p. 23).

c. Partial analysis.

d. Corrected for estimated 0.75% ilmenite and magnetite.

e. Corrected for estimated 2% analyzed titanomagnetite.

f. Corrected for 1.6% analyzed clinopyroxene.

g. Spectrographic determinations in p.p.m. given by S. R. Nockolds: Cr, 1000; V, 5; Ni, 1750; Co, 120.

h. Value for Al203 misprinted as 0.90.

The following specimens were rejected on the basis of their chemical analyses:

Mol % Fo	Locality	Basis for rejection
80.8	Alice Springs, Australia	low Si high Y
32.3	Monroe, Orange County, N. Y.	high Mn
5.5	St. Utterviks Hage, Tunaberg, Sweden	high Mn

The rejected specimens will be reconsidered in the light of their (130) spacing below.1

¹ It would be desirable to construct a determinative grid for the series forsterite-fayalitetephroite based on d_{130} and some other parameter (e.g., index of refraction, $2V_{\alpha}$, density); however, a sufficient number of suitable analyzed specimens were not available. It is noteworthy that the variation of d_{130} is unique relative to the nearly parallel variations of indices of refraction, $2V_{\alpha}$, and density.

p		2	0) 2.7657		(5) 2.7669		0) 2.7657			(0) 2.8295			2.8291		(0) 2.8295		55) 2.8698			50) 2.8292
		32.35	(32.37		(32.35		(32.37			(31.62	16	6	(31.62	0	(31.62	0	(31.16		0	(36.80
$2\theta(130)$		32.380	32.380	32.360	32.355	32.370		31.615	31.635	31.610	31.625	31.630	31.630	31.610		31.160			36.85(
rements of	CuKa	32.360	32.370	32.350	32.360	32.375	32.375	31.610	31.610	31.625	31.630	31.625	31.635	31.615		31.150		CoKa1	36.850	
Measu		32.380	32.370	32.350	32.360	32.375	32.365	31.630	31.625	31.630	31.625	31.620	31.610	31.615	31.620	31.170	31.180		36.875	36.860
		32.375	32.345	32.365	32.355	32.370	32.375	31.620	31.625	31.630	31.620	31.635	31.625	31.625	31.635	31.165	31.160		36.870	36.860
Preparation	Preparation hydrothermal			hvdrothermal		dry fusion	•	blast furnace			dry fusion			dry fusion		dry fusion	•		dry fusion	
Source	Source O. F. Tuttle			H. S. Yoder		I. F. Schairer		L. H. Adams			Th. G. Sahama			K. Yagi	0	R. B. Snow			Th. G. Sahama	
Refer- ence		LC,	2	38	2	I		2	8		14			26		27	Ŋ		14	
No.		T7-36C	NO. 71	P-2	a 4	[ľ			1			FAS112-2		1			!	
Name		Arcterite	ATTAICTO	Torsterite	011101610 ·	Torsterite		Favalite			Favalite			Favalite		Tenhroite			Favalite	

TABLE 5. X-RAY MEASUREMENTS FOR SYNTHETIC OLIVINES

OLIVINE X-RAY DETERMINATIVE CURVE

483

Results from Natural Specimens

The x-ray data for the natural samples are given in Table 3 and the average values (the mean of the average for those x-rayed by each writer) are plotted in Fig. 1.

Two points in the figure, in addition to two of those rejected on the basis of chemical analysis, are almost certainly subject to large error:

Mol % Fo	Locality
40.0	East Greenland 1907 (1800 meters)
63.1	East Greenland 4077 (500 meters)

The first of these has been reexamined optically by Dr. I. Muir and he gives Fo = 25-27 on the basis of indices of refraction ($\gamma = 1.829$) and $2V_{\alpha}(60^{\circ})$. The value obtained from the x-ray measurement is Fo = 30. Since there appears to be agreement between the new optical and x-ray determinations, the chemical analysis is believed to be in error and is re-

FIG. 1. Olivine x-ray determinative curve (solid line). Circles represent average d_{130} for analyzed specimens used in calculation of determinative curve. Crosses represent those points rejected for reasons given in text. Dashed line is assumed linear variation of d_{130} for synthetic olivines, using experimentally determined end points.

jected. There are no obvious reasons for rejecting the chemical analysis of the second specimen. The writers have taken the liberty of excluding this measurement from the calculation of the determinative curve for the sole reason that it appears to be anomalous.

Other problems arose in fitting a curve to the data on the natural specimens, and the writers are indebted to Dr. Felix Chayes for suggesting the following statistical analysis and making many of the computations.

The first problem to arise involved the use of the data obtained by each writer on the same specimen. It was necessary to learn whether either group of averaged measurements was biased before they could be combined. The spacing data for those compositions x-rayed by both writers were plotted against each other. If there were no bias the best fitting straight line would be characterized by a slope not differing significantly from unity and an intercept not significantly different from zero (see Youden, 1951, p. 40-49). The following equations were obtained using first the spacings of Yoder (d_y) and then those of Sahama (d_s) as the independent variable:

 $d_s = 1.0105 \ d_y - 0.00117$ $d_y = 0.9868 \ d_s + 0.00142.$

For the first equation the error of slope is 0.0140 and that of the intercept 0.00130. The errors for the constants of the second equation are 0.0136 and 0.00127, respectively. Departures of slopes and intercepts from the expected values are thus insignificant in relation to error, and it is permissible to use the mean of the average d value of each writer. In a broader sense, the small differences between the two equations also indicate that analogous measurements by other investigators may be compared with those presented here in estimating the composition of unanalyzed olivines.

Next, it was necessary to choose the independent variable, d_{130} or composition. The spacing was chosen as the independent variable for two reasons: (1) in the opinion of the writers the d_{130} is known better than the chemical composition, which is based on only a single analysis of each specimen, and (2) the spacing is to serve as the estimator of the chemical composition in the application of the determinative curve.

The equation of the determinative curve for the data assembled in the above-mentioned fashion is

Fo (mol %) = 4233.91 - 1494.59 d_{130} .

The residual variance amounts to 0.34%, and, as there seems to be no systematic distribution of deviations, higher order terms are not justified.

The fictive end points are d_{130} (Fo = 100) = 2.7659 and d_{130} (Fo = 0) = 2.8328.¹

The upper and lower 95 per cent confidence limits are as follows:

d	True value, mol % Fo	$\pm 95\%$ confidence limits
2.8328	0	1.65
2.8194	20	1.03
2.8061	40	0.88
2.7994	50	0.74
2.7927	60	0.60
2.7793	80	0.05
2.7659	100	1.08

The confidence limits plot as gentle curves, which are closest to the determinative curve at its mean and furthest from it at the limits of the range. The strict interpretation of the confidence limits presupposes that d is subject to negligibly small random errors. As seen in the data tables the estimate of d is subject to measurable error. The standard deviation is 0.00084 Å, and since the total range is only 0.0669 Å this amounts to ± 2.45 mol per cent Fo. If the errors involved in the estimate of d_{130} and the estimate of the true composition are added, the error attached to an individual estimate of composition, using the above determinative curve, is approximately ± 4 mol per cent near pure Fo or Fa and about ± 3 mol per cent in the vicinity of the mean, which lies near 64 mol per cent Fo.

Results from Synthetic Specimens

The average d_{150} for the three synthetic forsterite specimens and three synthetic fayalite specimens is 2.7661 and 2.8293, respectively. On the assumption that the variation of d_{130} is linear throughout the composition range, the following determinative curve may be calculated:

Fo (mol %) = $4476.739 - 1582.278 d_{130}$.

The validity of the assumption will be examined below. The curve is plotted as a dashed line in Fig. $1.^2$

The d_{130} for synthetic tephroite is 2.8697. The value is included for use in determining the correction for olivines high in Mn.

¹ In the Annual Report of the Director of the Geophysical Laboratory (Abelson, 1954, p. 120) the fictive end points of the preliminary curve based on fewer data were given as d_{120} (Fo=100)=2.7660 and d_{130} (Fo=0)=2.8326.

² The synthetic intermediate olivines prepared by Bowen and Schairer (1935, p. 195– 197), on which the optical determinative curves are based, could not be located. Only the unanalyzed, partially oxidized starting materials prepared in the gas furnace were found, and these gave broad multiple reflections.

DISCUSSION OF RESULTS

Those samples rejected on the basis of their chemical analysis may now be reexamined in the light of their (130) spacings. The Alice Springs, Australia, specimen (Fo = 80.8) appears to have too small a spacing. The discrepancy cannot be attributed to the Ca or Mn (not determined) content since the correction would have the wrong sign. The analysis is still regarded as incorrect. The Monroe, Orange County, N. Y., specimen (Fo = 32.3) was considered to have too high an MnO content (4.54%); however, the correction for Mn would be in the wrong direction. The olivine occurs with magnetite, and it is possible that inclusions of that mineral could account for too high an FeO content (Fe₂O₃ was not determined). The St. Utterviks Hage, Tunaberg, Sweden, specimen (Fo = 5.5) was also believed to have too high an MnO content (4.40%) to be suitable for a determinative curve of the forsterite-fayalite series. When corrected for Mn, however, the spacing still gives a reasonable estimate of the Fo content.

The two additional specimens rejected, East Greenland 1907 (Fo=40.0) and East Greenland 4077 (Fo=63.1), have (130) spacings which indicate high Mn content. The chemical analyses do not support this suggestion.

The difference (0.0035 Å) between the d_{130} of synthetic fayalite and the fictive d_{130} for pure natural fayalite lies outside the precision of measurement and is of some concern. The fictive point represents a fayalite having 8.7 mol per cent tephroite or 6.0 weight per cent MnO, on the assumption that the (130) spacing of synthetic fayalite is correct. Since the chemical analyses of the natural samples were chosen on the basis of low MnO content, the source of the discrepancy must lie elsewhere. One possible, but improbable, explanation is that two forms of fayalite having slightly different properties exist (see Chudoba and Frechen, 1943). The most likely explanation is that the cell dimensions are a function of the temperature of formation. The synthetic fayalites were produced at temperatures over 1000° C. Olivines having a high iron content are usually associated with lower temperatures. It is to be noted that there is close agreement between the (130) spacing of synthetic forsterite and the fictive (130) spacing for a pure natural forsterite.

Theoretical Relation of d_{130} to Composition

The practical problem of estimating the composition of most natural olivines by means of d_{130} appears to have been met. It is of interest to examine qualitatively why d_{130} varies linearly, within the limits of error, with composition.

The construction of a compositional determinative curve for solid solution series from powder x-ray diffraction data was suggested and applied to certain cubic systems by Vegard (1921) and further applied by Vegard and Dale (1928). Vegard's "law" stated that the cell dimension, a_0 , varied linearly with composition. Deviations from linearity were considered as a measure of the nonideality of the solid solution series. Grimm and Herzfeld (1923, p. 80) as well as Mehl and Mair (1928, footnote p. 65) and Zen (1956) pointed out that it is the atomic volume, a_0 ,³ which varies linearly in *ideal* substitutional type solid solutions. Further complications arose when the "law" was applied to systems of lower symmetry since two or more parameters had to be considered. For these reasons Vegard's "law" is now used only in special cases as an approximation.

The forsterite-fayalite series has been shown in part to be thermodynamically ideal within the error of measurement by Sahama and Torgeson (1949) on the basis of heats-of-solution data. In addition, the present writers find that the molar volumes of natural olivines calculated from the density data of Bloss (1952, p. 974–975) are essentially additive. (The molar volumes of synthetic forsterite and synthetic fayalite, 43.7 cc. and 46.4 cc., respectively, calculated from the unit cell data of Tables 1 and 2, differ by only a small amount.) These observations suggest that the variation of cell parameters should not deviate greatly from the ideal values.

There is, unfortunately, no unique way of predicting the changes of a specific cell spacing solely from knowledge of the additivity of molar volume. The cell volume, V, is related to the molar volume V_m by a constant:

$$V = \frac{nM}{N_0\delta} = kV_m,$$

where n = molecules per unit cell, $N_0 =$ Avogadro's number, $\delta =$ density, M = molecular weight; and is related to the three parameters of the orthorhombic cell by

$$V = abc.$$

On the other hand, the spacing of any (hkl) is related to the orthorhombic cell parameters as follows:

$$d_{hkl} = \left(\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}\right)^{-1/2}$$

The relation of d_{130} to the cell parameters would then be

$$d_{130} = \left(\frac{1}{a^2} + \frac{9}{b^2}\right)^{-1/2}.$$

If one notes that a/b is approximately the same for the olivine end members, then the change of d_{130} with composition is essentially a linear function of the parameters. It is presumed that the total change of each cell parameter is sufficiently small over the composition range so that their functions are closely approximated by straight lines. An examination of the Bunn chart (Bunn, 1946, p. 133) for indexing tetragonal powder patterns indicates that the variation of d_{hkl} is essentially linear for small changes in the axial ratio. On the basis of these qualitative arguments the linear relation of d_{180} vs. composition appears reasonable.

In conclusion, certain features of the x-ray method should be pointed out. The peak observed on an x-ray chart is a summation of the diffraction of many crystals. If these crystals are variable in composition, as a result of zoning, for example, then a broad peak or even a multiple peak obtains. The x-ray method, therefore, gives an average composition in the same way as a chemical analysis, but in addition indicates in a crude way the range. On the other hand, composition determined by optical methods represents that of a small number of crystals, and some discrepancies between the results of the various methods are to be expected. Although the variations in the three cell parameters of natural olivines may not be sufficiently unique, it should be possible to determine composition of crystals in the three-component system forsterite-fayalitetephroite by means of powder x-ray diffraction patterns. It is more likely that a combination of methods, optical and x-ray, will provide a more practical estimate of composition of the complex olivines.

ACKNOWLEDGMENTS

The writers are greatly indebted to the analysts and contributors of specimens listed in Tables 3 and 5, particularly to those who kindly granted permission to publish chemical analyses as yet unrecorded. Dr. A. Juurinen made five chemical analyses (Fo=39.7, 61.3, 62.2, 68.1, 87.4) especially for this study; Dr. I. Muir analyzed Fo=26.3; Mr. R. J. Murray, Fo=78.0 and 76.4; and Mr. Aulis Heikkinen, Fo=80.6. The other analysts are recorded in the references cited in Table 3. The samples of the fayalite-tephroite series, not used in the present study, from Drs. W. T. Schaller and K. Omori and the late Mr. L. H. Bauer were appreciated. Dr. I. Muir contributed many new optical determinations which provided an independent control on the chemical analyses. Dr. Felix Chayes is heartily thanked for his detailed statistical analysis of the natural olivine data and his comments on the manuscript. Helpful criticism was also obtained from Drs. G. Kullerud, D. B. Stewart and J. R. Smith.

References

1. ABELSON, P. H. (1954), Annual Report of the Director of the Geophysical Laboratory: Carnegie Inst. of Wash. Year Book No. 53, 95-145.

- ADAMS, L. H. (1931), The compressibility of fayalite, and the velocity of elastic waves in peridotite with different iron-magnesium ratios: Gerlands Beitr. Geophys., 31, 315– 321.
- BLOSS, F. D. (1952), Relationship between density and composition in mol per cent for some solid solution series: Am. Mineral., 37, 966–981.
- BOWEN, N. L., AND SCHAIRER, J. F. (1935), The system, MgO-FeO-SiO₂: Am. Jour. Sci., 29, 151-217.
- AND TUTTLE, O. F. (1949), The system MgO-SiO₂-H₂O: Bull. Geol. Soc. Am., 60, 439–460.
- BRAGG, W. L. (1947), The conversion factor for kX units to Angstrom units: Jour. Sci. Instr., 24, 27.
- 7. AND BROWN, G. B. (1926), Die Struktur des Olivins: Zeit. Krist., 63, 538-556.
- 8. BUNN, C. W. (1946), Chemical Crystallography: Oxford University Press, Oxford, 422 pp.
- CHUDOBA, K. F., AND FRECHEN, J. (1943), Der Einflusz der Temperatur auf die Beziehung zwischen Optik und Chemismus der Olivine: Neues Jahrb. Min., Monatshefte, A, 91-106.
- DEER, W. A., AND WAGER, L. R. (1939), Olivines from the Skaergaard intrusion, Kangerdlugssuak, East Greenland: Am. Mineral., 24, 18-25.
- 11. DREVER, H. I., AND JOHNSTON, R. (1956), Olivines of picritic sills: in press.
- GRIMM, H. G., AND HERZFELD, K. F. (1923), Über Gitterenergie und Gitterabstand von Mischkristallen: Zeit. Phys., 16, 77-83.
- JOHNSTON, R. (1953), The olivines of the Garbh Eilean Sill, Shiant Isles: Geol. Mag., 90, 161-171.
- KELLEY, K. K. (1941), The specific heats at low temperatures of ferrous silicate, manganese silicate, and zirconium silicate: Jour. Am. Chem. Soc., 63, 2750.
- MATHIAS, M. (1949), Two olivines from South African melilite-basalts: Min. Mag., 28, 486–491.
- MEHL, R. F., AND MAIR, B. J. (1928), Chemical affinity in metallic alloys, especially solid solutions: A study in compressibility: *Jour. Am. Chem. Soc.*, 50, 55-73.
- MUIR, I. D. (1954), Crystallization of pyroxenes in an iron-rich diabase from Minnesota: Min. Mag., 30, 376-388.
- PENFIELD, S. L., AND FORBES, E. H. (1896), Fayalite from Rockport, Mass., and on the optical properties of the chrysolite-fayalite group and of monticellite: Am. Jour. Sci., 1, 129–135.
- PETERS, J. (1918), Siebenstellige Werte der trigonometrischen Funktionen: Verlag der Optischen Anstalt C. P. Goerz, Berlin.
- POLDERVAART, A. (1950), Correlation of physical properties and chemical composition in the plagioclase, olivine, and orthopyroxene series: Am. Mineral., 35, 1067–1079.
- RINNE, F. (1923), Bemerkungen und röntgenographische Erfahrungen über die Umgestaltung und den Zerfall von Kristallstrukturen: Zeit. Krist., 59, 230-248.
- Ross, C. S., Foster, M. D., AND MYERS, A. T. (1954), Origin of dunites and of olivinerich inclusions in basaltic rocks: Am. Mineral., 39, 693-737.
- SAHAMA, Тн. G. (1953), Mineralogy of the humite group: Ann. Acad. Sci. Fennicae, Ser. A, III, No. 31, 1-50.
- 24. AND TORGESON, D. R. (1949a), Thermochemical study of the olivines and orthopyroxenes: Bur. Mines Rept. Investigations 4408, 1-24.
- AND —— (1949b), Some examples of the application of thermochemistry to petrology: Jour. Geol., 57, 255-262.
- SCHAIRER, J. F., AND YAGI, K. (1952), The system FeO-Al₂O₃-SiO₂: Am. Jour. Sci., Bowen Vol., 471-512.

- SNOW, R. B. (1943), Equilibrium relationships on the liquidus surface in part of the MnO-Al₂O₃-SiO₂ system: Jour. Am. Ceram. Soc., 26, 11-20.
- SPENCER, L. J., AND HEY, M. H. (1932), A new pallasite from Alice Springs, Central Australia: Min. Mag., 23, 38-42.
- 29. STEVENS, R. E. (1946), A system for calculating analyses of micas and related minerals to end members: U. S. Geol. Survey Bull. 950, 101-119.
- TILLEY, C. E. (1952), Some trends of basaltic magma in limestone syntexis: Am. Jour. Sci., Bowen Vol., 529-545.
- TOMKEIEFF, S. I. (1939), Zoned olivines and their petrogenetic significance: Min. Mag., 25, 229-251.
- VEGARD, L. (1921), Die Konstitution der Mischkristalle und die Raumfüllung der Atome: Zeit. Phys., 5, 17-26.
- 33. AND DALE, H. (1928), Untersuchungen über Mischkristalle und Legierungen: Zeit. Krist., 67, 148–162.
- 34. WAGER, L. R., AND DEER, W. A. (1939), Geological investigations in East Greenland, Part III: Meddelelser om Grønland, 105, 1-335.
- WINCHELL, A. N. (1933), Elements of Optical Mineralogy: Part II, John Wiley & Sons, Inc., N. Y., 459 pp.
- AND WINCHELL, H. (1951), Elements of Optical Mineralogy: Part II, John Wiley & Sons, Inc., N. Y., 551 pp.
- WINCHELL, H. (1950), Preliminary report on the lattice constants of olivines: Amer. Crystallogr. Assoc., Abstr. Meeting, April 10-12, 1950, p. 14 (see Structure Reports, 1950, 13, 367-368).
- YODER, H. S. (1952), The MgO-Al₂O₂-SiO₂-H₂O system and the related metamorphic facies: Am. Jour. Sci., Bowen Vol., 569-627.
- YOUDEN, W. J. (1951), Statistical Methods for Chemists: John Wiley & Sons, Inc., N. Y.
- 40. ZEN, E. (1956), Validity of "Vegard's Law": Am. Mineral., 41, 523-524.

Manuscript received November 24, 1956.