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ANALYTIC CLASSIFICATION AND QUADRIPLANAR CHART'-

ING OF ANALYSES WITH NINE OR MORE COMPONENTS*

JouN B. Mnntto, Jn., t'. S. Geological Suraey, Beltsaille, Maryland

ABSTRACT

Analytic methods are used for the classification of analyses having nine or more com-

ponents, though under favorable conditions such analyses may also be charted' A square

matrix of the third order is formulated with three columns that represent 3-dimensional

Cartesian vectors extending outrvard from the origin. The end points of these vectors are

triads of coordinates defined by the percentages of a given analysis. By means of a col-

lineatory transformation, such a matrix is transformed to a new frame of reference rvherein

these vectors appear as intercepts on new axes of X, Y, and Z. 
'fhus 9 numbers are reduced

to 3 unique numerical indices.

The algebraic procedure required for a collineatory transformation consists in the

solution of a cubic equation derived from the determinant of a characteristic matrix.'I'he

roots of this equation, known as characteristic roots, latent roots, or eigenvalues, are found

to be the elements in the principal diagonal of a diagonalized matrix, whose other elements

are zeros. The sum of these roots is called the trace or spectrum (T) of the transformed

matrix If the roots are real numbers, their three values together with (100-T) may be

taken as quadriplanar coordinates for charting inside or outside a tetrahedron of reference'

Thus each analysis may be represented by a single point, ivhich may then be projected

either apically or orthogonally onto one or more of the triangular faces of the tetrahedron,

for a 2-dimensional representation. Complex roots cannot be charted, but the analyses of

most igneous rocks yield real roots.

A refinement of this method by the use of symmetrical matrices eliminates complex

roots, ancl thus renders charting universally ieasible. Symmetry with respect to the princi-

pal diagonal is produced before diagonalization by post-multiplying an unsymmetrical

matrix of the third order by its transpose. A generaiization of this operation consists in

post-multiplying a rectangular array of the order 3X4, 3X5, 3X6, or in general 3X (3+k)

by its transpose. This constitutes a third method rn'hich provides for the classification and

charting of 12, 15, 18, or in general 9f3k variables; and if one or two zeros are introduced

into the rectangular arrays, any number of variables in excessof 9maybe analyzed. The

insertion of one to four zeros in a square matrix of the third order, before it is multiplied

bf its transpose, makes it possible to handle 8, 7 , 6, or 5 variables. These three methods are

not interchangeable; instead one is selected and used for the required purpose.

INtnooucrroN

I'he classification and charting of a number of variables, especially the

components of analyses that sum to 100, is a matter of perennial interest

to most scientif ic workers. In two earlier papers the writer (1948' p'

324-336 and 1949, p.706-716) presented methods for charting 5, 6, and

7 variables on the triangular and tetrahedral boundaries of hyper-

tetrahedra of 4,5, and 6 dimensions; but suitable coordinate nets could

not be devised for more than 7 variables. These, however, were essentially
multiple charts, in that the variables were charted as triads with reference

* Publication authorized by the Director, U. S. Geological Survey.
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614 JOHN B. MERTIE, JR,

to bounding triangles, or at most as tetrads with reference to bounding
tetrahedra. Such graphs had the advantage that the variations of 3 or 4
components between consecutive analyses were shown;but the variations
of all the components of the analyses could not simultaneously be
charted. This is the dilemma in dealing with many variables.

An alternative solution of this problem is a group classification and
charting of analyses, whereby the init ial variables are so combined as to
formulate a smaller number of composite variables. This condensation,
however, must be accomplished by algebraic processes such that the new
variables are unique, that is, they cannot assume identical values from
the components of dif ierent analyses. An example of the improper com-
bination of variables would be to add or multiply three components of an
analysis. This sum or product would not constitute a unique composite
variable, as the same numerical value could be obtained from difierent
analyses. An analogy of the contemplated process, if one were dealing
with an equation of 9 variables, would result if this equation was partially
differentiated for 3 variables. sav

and

and if the new equation was charted with regard to these three partial
derivatives after numerical values had been assigned to the other vari-
ables. But we are dealing with percentages, or numbers, not with func-
tions, and a process must be devised to combine these into a small
number of unique numbers that can be interpreted either as numerical
indices of the analyses or as numerical data for empirical charting. It
has seemed best to accomplish this objective by the formulation of 3 new
variables, each of which is a function of all the components of an analysis.
This, however, is group classification and group charting, which wil l show
distinct differences between total analyses, but wil l not ordinarily show
quantitatively the mode of variation of the individual components of
analyses. The thinking and perception of the operator must become
adjusted to this different objective.

Matrices wil i be uti l ized to develop the proposed method. Most geol-
ogists are familiar with the elementary properties and uses of deter-
minants, as that topic is treated in courses of college algebra. Matrices,
however, are Iess well understood, for which reason a brief description of
the nature of a matrix seems desirable. Perhaps the best way to describe
a matrix is to show the differences between it and a determinant. A deter-
minant, as is well known, is a square array of numbers, symbols, or func-
tions in rows and columns, say 3 rows and 3 columns, or in general n

af
^ ,
oz

af aJ
d'r dy
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rows and ,t columns, enclosed by 2 vertical bars. As the array is square its

order may be stated merely by the use of a single digit, call ing it a deter-

minant of the nth order. A matrix is a similar array enclosed by double
instead of single vertical bars, but it may be either square or rectangular.
If rectangular, its order is stated by 2 digits specifying respectively the
number of  rows and columns,  say the order  of  3X4,8X5,  or  in  general

m X n .
A more fundamental difference between a matrix and a determinant

is that the matrix is merely an array of elements with assigned meanings,
according to the problem under investigation, but with no composite
value. A determinant, on the other hand, is a square array of elements,
which represents a complex function, that has a determinable numerical
or aigebraic value. In fact, a determinant may be regarded,as,a function

of  some square matr ix ,  such that  i t  may be wr i t ten ut  lZ l : , f l l lZ l l l
Both matrices and determinants may be subjected, not merely to the
elementary operalions of addition, subtraction, multiplication, division,
involution, and evolution, but also to more highly involved algebraic
processes, though the manipulative rules are different. A special kind of

algebra, called matrix algebra, has been developed for the treatment of
matrrces.

The operations of ordinary arithmetic and algebra are controlied by
live laws, which are as follows:

1. Commutative principle in addition (and subtraction)
2. Commutative principle in multiplication (and division)
3. Associative principle in addition (and subtraction)
4. Associative principle in multiplication (and division)
5. Distributive principle in combined addition and multiplication.

If one or more of these laws is voided, a new type of algebra results, that
operates only by the non-voided principles. Thus the commutative prin-

ciple is voided in the multiplication and division of matrices, wherefore
the so-called matrix algebra has been evolved. If both the second and
fourth laws are voided, the Cayley algebra results; and other algebras
may similarly be developed. In this paper, square and rectangular ma-
trices are muitiplied, for which reason the operation of matrix multiplica-
tion should be understood;but no further applications of matrix algebra
are required.

Matrices originated as tabulations of coefficients in systems of l inear
equations, providing a shorthand device for the solution of such equa-
tions. They are now uti l ized, however, for many other purposes, accord-
ing to prior agreement as to the meaning of their eiements. They are ex-
tensively used in the study of vectors, tensors, and related entit ies; in
variate statistical analysis; in multiple factorial analysis; and in numer-
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ous other applications. In this paper, the uti l ization of matrices is rather
empirical, but is related to vectorial and factorial analysis.

FonuurarroN or Mrlrr<rx

Consider a system of three-dimensional Cartesian coordinates, with a
vector that starts at the origin and extends outward into the first octant
to a point defined by 3 coordinates. The values of these coordinates wil l be
taken as the percentages of SiO2, Al2O3 and FezOs in a rock analysis re-
computed to total 1007a. A second vector, l ikewise starting at the origin,
wil l be connected to a point determined by the percentages of FeO,
MgO, and CaO; and a third vector wil l similarly be constructed, using
the percentages of Na2O, KrO, and R, where R means the sum of the re-
maining components of the analysis. These triads are tabulated as three
columns to form a square matrix of the third order, though rows instead
of columns could equally well be uti l ized. This matrix may now be
operated upon algebraically in such a way that its three component vec-
tors wil l be transformed to a new system of cartesian coordinates wherein
each vector wil l become an intercept on one of the new coordinate axes.
The terminal of a 3-dimensional intercept has three coordinates, of
which two are zeros; zind hence for a specified axis it may be identified by
a single number. Therefore each of the three original vectors wil l simi-
larly be represented by a single number, thus reducing nine percentages
to three numerical indices.

A change in origin is accomplished in ordinary analytical geometry by
stating the coordinates and rotation of the new frame of reference in
terms of the old one, and in making the transformation by means of
enabling equations. In the present transformation, however, no such
data are given but two limiting geometric conditions serve to localize the
new frame of reference. one of these is that the coordinates of the three
intercepts shall l ie on the extension of the three original vectors; the other
is that a triangle formed by connecting the ends of the three intercepts
shall be parallel to and therefore similar to the triangle formed by joining
the terminals of the three original vectors. Owing to these limitations,
such a change in the frame of reference is called a coll ineatory or simi-
larity transf ormation.

DBnrv.trroN aNo Sorurrolr on Cunrc EquerroN

A square matrix of the third order, formulated in the manner outl ined
above, is used to obtain a cubic equation, from which the required nu-
merical indices are derived. Such a matrix, called A, is shown below in
generalized form, using the double subscript type of notation for its nine
elements. The required transformation is obtained by subtraeting from
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A the quantity trI, where I is the unit or identity matrix, and \ is a general
variable.

] u l  
o t !  u ' ,  

l ,  I  
I  O  , , ] ,  

, o , ,  
- ^  t r r :  a r r  

l l
A - I I ] ] :  d r  o 2 2  a : r l l - I l l 0  I  0 i : l l  o 2 t  a z r - X  o x  I

& t t o 3 2  o , , i  l o o l ] ]  ] i  o , ,  a t t  o , r - x l l

As every square matrix defines a determinant, the matrix l iA-ff l l  t"uy
now be interpreted as the determinant  lA-Ul ,  which is  expanded to
obtain its algebraic value. This is accomplished, not by the ordinary
method of clearing a determinant of the third order, but by means of
one of Laplace's expansions, which permits the writ ing of the coefficients
of \ as minor determinants, thus:

l r -x r l  :  - r , * (a , , *azz*a, r ) \2 -  l -  : l :  : : : l . i : , ' " " ; , ' ,1 . ] : ; :  : : l ] ^
A n  A n  A t a

A2t AII  O2x

Olt  Atz (LB:t

This reduces to
t(I) : - X' * (art * azz I as)\z

- l(.arazz I azzan f orro:r) - (onazt I ouotz * araorr) ]X

-f 
l(arazzaaa { apa4Q31 -l osazfip) - (osa22a31 I axarzan * ananozr))

Written in generalized form and equated to zero, this equation becomes

t r a + i t x ? * c X f 4 : g

where D and d are negative coefficients, though their numericai values
may prove to be either positive or negative. A crit ical examination of the
make-up of coefficients D, c, and d wil l convince the most skeptical person
that the cubic equation in lambda obtained from the percentages of one
analysis cannot be duplicated by similar data from any other analysis.
The matrix l ln-Xtl j is known as the characteristic matrix of A; the
cubic equation in lambda is called the characteristic equation of A;
and the roots of this equation are designated as characteristic roots,
latent roots, or eigenvalues.

The nature of the roots of a general cubic equation may be predictetl
from its discriminant, that is,

L : Tgbal _ 4b|d + b2c2 _ 4ca _ 27dz

If the sign of this discriminant is positive, there are three real roots; if
the sign is negative, there are one real and two conjugate complex roots.
A third alternative, where A:0, wil l not materialize in dealing with
decimal fractions. A trigonometric solution is used if the roots are real;
otherwise Cardan's solution is employed. These standard methods of
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solving cubic equations wil l be found in any textbook on the theory of
equations, such as that written by Dickson (1939, p. 12-51).

Special mention should be made of a small book by Salzer, Richards,
and Arsham (1958), entit led a "Table for the solution of cubic equa-
tions." Only 6 of the 161 pages of this book refer to real roots so that
these, with the permission of the authors, could be photographed and
made available to anyone interested in these methods. For the general
cubic, the argumenl of these tables is a quantrty

^ q z b _ b c 2 b s
0 : - ,  w h e r e  y ' : d - t ,  a n d  C : d - i + i ;

but for the cubics solved in this paper, it must be remembered that the
coefficients b and d are negative. The tables yield the values of /r(d),
fz (0), and Jz (d) ; and the three roots are

It should be noted that the value of tr1, as us€d in this manuscript, is de-
rived from/a (d), ),, fuomJz (d), and ),3 from/r (0). On the other hand, the
real root of a Cardan solution, which is derived from /r (0) of the tables,
is designated by the writer as tri. Even with the preliminary computa-
tions required, these tables obviate a large part of the labor of solving
cubic equations by standard methods.

Appr,rcerroN or ErcrlivAr,uos

An important theorem of matrix algebra states that any nonsingular
(lAl l0) matrix with distinct latent roots may be reduced by a col-
l ineatory transformation to a diagonal matrix, wherein the elements of
the principal diagonai are the iatent roots or eigenvalues of the given
matrix. AII other elements of the diagonal matrix are zeros. This process,
called the diagonalization of a matrix, is shown below, first in generalized
form where tr1, tr2, and tre are the latent rools of the characteristic cubic;
and second in specific numerical form, where the 9 elements of the orig-
inal matrix are the percentages in a mean analysis of 90 biotite granites,
and the 3 elements in the diagonal matrix are the derived eigenvalues.

o b_:J"Q|)  _ ^p J

&t t  o r2

azr 422

a t 3

a2:J
l l  ̂ ,  0 o I- l l  o  I ,  0  |
l l  0  0  r s l l

7 1 . 6 6

11.49

1. .46

A:\ A32 A3t

1 . 1 0  3 . 0 6
0 .  8 7  4 . 1 3
1  .97  | . 2 ( t

l l7t.e67 
0 0 

l l0  -1 .700  n  L l
I  0 0 .3..s.12 I



CHARTING OF ANALYSDS WITH NINE COMPONENTS 619

This diagonal matrix is unique except for the order in which the latent

roots are enumerated, as the transformation does not assign the inter-

cepts represented by these numbers to particular axes of the new irame

of reference. Obviously, therefore, the elements of the principal diagonal,
which constitute the numerical indices of this method, could be written
in  the Ofdef  A110'22Ass,  0.sAsa22, a22o4yas3, A22a3say,  AyayA22, Ot azzAzz&tt .

In reality a geometric study wil l show that at least 6 frames of reference
will satisfy this transformation. This indeterminacy has been overcome
in the following way. A cubic equation with real roots is solved by means

of several algebraic substitutions, of which the Iast makes use of the trig-

onometric function cos X. After the first root is obtained from cos X,

the other roots are obtained respectively from cos (120'+X) and cos
(240"+X). The roots tr1, tr2, and tra in the principal diagonal are enu-

merated in this order.
Twenty groups of anaiyses of igneous rocks and 4 of mafic minerals

taken from granitic rocks were selected to show the application of this

method. These are presented in Table 1.
The eigenvalues derived from these 24 groups of analyses are shown in

the first three columns of Table 2. It wil l be noted that22 of the derived

cubics yield real roots, and that the exceptions are the rock i jolite and

the mineral biotite. In general it appears that most igneous rocks can be

represented by 3 real numerical indices, though exceptions other than

the two cited have also been found.
Certain relationships appear in these eigenvalues. The values of trr are

near yet invariably greater than the percentages of SiOz in the original

analyses, but no l inear relationship exists, as most of the differences

range from 0.2 unit to 2.8 units, though larger differences result from

the two Cardan solutions. Negative values of tr2 are characteristic of the
granites, adamellite, tonalite, syenite, monzonite, nepheline syenite,

shonkinite, and muscovite. The lamprophyres and monzonite have larger

values of trr than the more felsic granitic rocks; hornblende and augite

show sti l l  larger values; and pyroxenite and peridotite are characterized

by the highest values of tra. Somewhat different relationships exist for

eigenvalues derived from symmetrical matrices.
The sum of each set of three real eigenvalues, which in Table 2 ranges

from 50 to 82, is known as the trace or spectrum of the diagonai matrix

and is designated as T. The eigenvalues corresponding to each trace could

empirically be charted as tri l inear coordinates referred to an equilateral

triangle having one side equal to the specified trace, and T unit divisions

along each side of the triangle. This plotting, however, would not be

convenient. as manv triansles of different sizes would have to be shown.
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Such unequal triangles, however, wil l f i t at different alt itudes within a
tetrahedron with a base of 100 unit divisions of the same magnitude;
and it is clear that such parallel tr iangles wil l l ie at distances of (100-T)
above the basal triangle of the tetrahedron. Therefore the 3 eigenvalues,
t r r :a ,  t r r :0 ,  and t r3:7,  and the corresponding a l t i tude (100-T) :0,  as
shown in the first four columns of Table 2, wil l constitute 4 quadriplanar
coordinates suitable for charting each analysis as a single point within,
or for one or more negative eigenvalues, outside a tetrahedron of ref-

'Il-rLn 
2

Quadriplanar coordinates
Trilinear coordinates
(Apical projection)

Trilinear coordinates
(Orthogonal projection)

r00-T

1
2
3
4
5
6
7
8
9

1 0
1 1
t2

1 4
l 5
1 6
1 7
l 8
1 9
20
2 1
22
23
) r

7 5 . 1 9 4  - 1  3 9 3
7 2 . 7 4 8  - 2  2 5 1
71.967 -1 .709

68.36r  -1 .7  52
67.192 -0 .047

5 1 . 8 7 0  2 . 5 4 5
s 1 . 5 9 5  1 . 5 7 2
s l . 7 7 1 ,  3 . 4 5 3
44 428 5 830
52.827 0 .525
54 809 0  911
5 2 . 5 2 0  1  4 3 3
s s . 0 4 8  0 . 7 7 0
6t 219 -2 160
55 538 -2 .093

57.289 0 . t22
s 6 . 1 0 5  - 1 . 4 9 2

5 1 . 4 6 3  0  2 6 6
49 234 -0  881
4 8 . 0 1 8  1 . 9 4 6  t
46 .426 -O 716
44 525 2 .998 X
49.697 0 .986
.51  694 0 .0125

1 . 9 7 0  2 1  2 3
2 9r3  26 .59
3 . s 3 2  2 6 . 2 1
4.19r  29 .20
2 . 6 1 6  3 0  - 2 4
4 . 2 6 5  1 1 . 3 2
5  . 5 5 4  4 t  . 2 8

2 6 . 5 7 6  t 8  2 0
2 4 . 7 5 1  2 4  9 9
10 538 36 .  1  1
7  . 5 7 0  3 6 . 7  |
8 . 3 1 7  3 7 . 7 3
6 882 37 .30
6 . 2 3 0  3 4  7 1
7 r95 39 36
3 .589 39 00
3.697 41  69
. 5 .  t 6 l  4 3  t 1
8  8 3 7  4 2 . 8 1
4 270i 48 09
5 . 7 4 1  4 8 . 5 5
3 712i 49.48

r 3 . 3 5 6  3 5 . 9 6
l 1  8 8 3  3 6 . 4 1

99.24  -1 .81

9 9 . 1 0  - 3 . 0 7

9 7  5 3  - 2 . 3 2

9 6 . 5 5  - 2 . 4 7

96 .32  -O.O7

8 8 . 3 9  4 . 3 4
8 7 . 8 6  2 . 6 8
63 -29  4 .22
s9.23  7  17
82.69  0 .82
8 6 6 0  1 4 4
8 4 . 3 4  2  3 0
8 7  8 0  r . 2 3
9 3 . 7 7  - 3  3 r
9 1 . 5 9  - . 3 . 4 5

9 3 9 2  0 2 0
96 22  -2  56
9 0 4 6  0 4 7
86 09  -1  54

90 23  -1 .39

7 7  6 0  1  5 4
8 t  2 9  0 . O 2

6.68  10  0 .5
6 . 6 1  1 1  7 8
7 0 3  1 2 2 7
7 . 9 8  1 3  9 2

10 03  12  70
16.32  18  04
1 5 . 3 3  1 9 . 3 1
9  5 2  3 2 . 6 4

t 4 . 1 6  3 3 . 0 8
t 2  . 5 6  2 2 . 5 8
1 3  1 5  1 9 . 8 1
1 4 . 0 1  2 0  8 9
I i  20  t9 .32
9 . 4 1  1 7 . 8 0

1  l  . 0 3  2 0  . 3 r
13  12  16  .59
t 2  4 t  1 7  5 9
1 4 . 6 4  1 9 . 5 3
1 3 . 3 9  2 3 .  t r

1 5 . 4 7  2 r . 9 2

1 2  9 7  2 5  3 4
1 2  1 5  2 4 . 0 2

2 6 0
3  . 9 7
4 7 9
5 . 9 2
3 7 5
7  . 2 7
9 4 6

3 2 . 4 9
33 .00
t6  49
1 1  . 9 6
l 3  . 3 6
10 98
9 5 4

l 1  8 6
5 8 8
6 . 3 4
9 . O 7

t 5  . 4 5

1 1 . 1 6

20 86
1 8 . 6 9

83.27
8 1 . 6 1
8 0 .  7 0
7 8 . 1 0
7 7  . 2 7
65 .64
65 .36
5 7  . 8 4
52.76
6 4 . 8 6
67 04
6 5 .  r 0
67 .48
72 79
6 8 . 6 6
70 29
70 00
65 .83
63 .50

6 2  . 6 1

61.69
63 .83

crence. The charting of negative tri l inear and quadriplanar coordinates
has been described in an earlier paper by the writer (Mertie, 1949, p.
707-7 ro).

Perspective drawings would be required to show the positions of many
points Iocated by quadriplanar coordinates. Obviously one could not
take the time and trouble to do this, and it therefore seems best to pro-
ject these points onto one or more of the triangular faces of the tetra-
hedron of reference. A perspective drawing of the inside of a l ined tetra-
hedron is shown in Fig. 1 to i l lustrate two ways of making the required
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Frc. 1. Perspective drawing of inside of lined tetrahedron, showing apical and

orthogonal projections of quadriplanar coordinates.

projection. T'he point P may be projected apically by the l ine DP to P1,

in which case the tri l inear coordinates of P on the triangle ABC will be

the quadriplanar coordinates a, B, and 7, recomputed to 100/6. A second

method is to project P orthogonally onto ABC, in which case the tri l inear

coordinates of P6 wil l be

This formula may be generalized for the boundaries of hypertetrahedra.

By either method, however, a single projection is inadequate, as two
points with dif ierent quadriplanar coordinates could by either of the two

cited methods occupy identical positions in the projection. Moreover,

one point that was projected apically might coincide with anoLher

point projected orthogonally; but if the projections were reversed, these

two points would no longer be superposed' Therefore a projection into

one plane of ail points by both methods of projection wil l assure that at

least two of the four projected positions of two original points wil l be

unioue"

( " * * )  ,  ( r . * ) ,  a n c r  ( " * * )
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Irrc. 2. Ptojection of quadriplanar coordinates on base of tetrahedron'

The relative positions of the quadriplanar coordinates derived from 19

igneous rocks and 3 granitic minerals are shown in Fig. 2, projected both

apically and orthogonally, in order to avoid projections on two triangular

faces. The numerical data for these two projections are given respec-

tively in columns 5-7 and 8-10 of table. 2. It happens that these values

cause no identical superpositions produced from any of the suggested

causes, though points 4 and !7, when apically projected, are close to-

gether. By orthogonal projection, however, they are far apart' For this

particular assemblage of analyses, a somewhat greater dispersion of

points is attained by orthogonal projection. In both projections, the

granitic rocks l ie at one end of the sequence, the ultrabasic rocks at the

other end, and the other 15 rocks and minerals at various intermediate

positions.
Variations in the charted positions of analyses resulting from dif-

ferences in the percentages of specified components are not ordinarily

apparent. However, some idea of the magnitude and direction of dis-

placement of a particular point could be obtained in the following way.

Suppose that an analysis showing 57a KrO is so changed that it be-

comes 2/6. This decrement might be added to the percentage of Na2O,

or proportionately to Naso and cao, or it might be distributed through-

out the analysis. After the disposition is made, however, a new cubic

equation and a new set of eigenvalues may be computed; and for some

specific distribution of the 3/6 K2o, the displacement of the projected

point wil l be apparent.
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Svuurrnrc Mernrcrs

The method of classification and charting so far outl ined has the cle-
fect that complex numbers may emerge as the latent roots of matrices
derived from some analyses; and in applying this method to many kinds
of analyses, complex roots might become very prevarent. A refinement
of the first method permits the elimination of alr complex roots, though
the process adds two arithmetical steps. A matrix of real elements that is
symmetrical to its principal diagonal is known to have a characteristic
equation that yields only real roots. The matrices heretofore used can

become large and unwieldy; and they are therefore reduced to total 100
by dividing each element by S/100, were s is their sum. This method of
producing a symmetrical matrix, and of obtaining its eigenvalues, is
i l lustrated below for the rock i jolite.

Ijolite, 9 components, from 3X3 matrix

l l  M.3z  4 .71  e .3s  l l  l l 44 .s2  18 .41  3 .78  11A A ' :  
l l  

1 8 . 4 1  4 . 3 4  1 . e 8  l l x  l )  + . z r  4 . 4 3  o . s o  l l
I  3 . 7 8  e . 8 6  3 . 2 s  l l  l l  q . s s  r . q s  s . z . s  l l

I I  
2073.87 8s4.8e 244.36 lJ:  

l l  
8s4.8e 361.68 118.82 l lt l  25s.36 118.82 24o.8e l l

Divided by 51.1256, we get

l l  40.56 16.72 4.78 t l  i l  48.13 0 0

l l rc .zz  7.07 z  sr  i ] - l l  o  0 .13 o
l l  4 .78  2 .33  4 .7 r  ) )  ) )  o  o  4 .os
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Ijoiite, 12 components, f rom 3X4 matr ix

44 .32  4 .71  9 .86  0 .68
18 .4 r  0 .13  9 .35  r . 36
3 . 7 8  4 . 3 4  1 9 8  1 . 0 8

44.32  18 .41

A A ' :

9 . 8 6  9 . 3 5

0 . 6 8  1 . 3 6

2084 13

909.66

208.23

,  we get

l l  41 .96  18

1 8 . 3 2  8

1  4 . 1 9  1

x  l l  4 . 7 1  0 . 1 3

50.48 0 0

3 . 7 8

4 . 3 4

1 .98

1 . 0 8

6660

I ' l' {
(

8 . 2 3

0 .  1 4

8 . 2 1

49.(

l
+

l t

208.

90 .

3 8 .
hv 4(

19 1
l

8 1

909.66

428.22

90.14

Divided

. 3 2  4 .

.oz _t .

. 8 1  0 .

u.4u u 
" l lo  0 .34 0 l l

0  0  0 . 5 3 i l

This method may be extended to 3X5,  3X6,  and in general  3X(3+k)
rectangular arrays, where k is positive. This generalization and its ex-
tension thus constitute a third method for the classification and charting
of analyses having 12, 15,18, or in general 9f 3k components that total
100. But the number of variables need not necessarily be divisible by 3,
as one or two zeros may be substituted for absent components in any
rectangular array, before post-multiplication by its transpose.

The classification and charting of fewer than 9 variables constitutes
another topic. It might be thought that a 3X2 matrix, involving 6
variables, could be multiplied by its transpose, thus producing a sym-
metrical matrix of the third order analogous to those obtained from
3X5, 3X6,  and 3X(3+k)  matr ices.  But  the symmetr ica l  matr ix  thus
obtained wil l be found to be singular, and therefore unusable.l A 2)(3
matrix also involves 6 variables, but when multiplied by its transpose
yields a square matrix of the second order which wil l have a quadratic
characteristic equation. The eigenvalues derived from such an equation
are not unique.

Fewer than 9 variables, however, can be handied by another method.
Given a nonsingular square matrix of the third order, such as heretofore
shown in generalized form. For the production of 8, 7, 6, or 5 variables,
zeros may be substituted as follows:

For 8 variables, let arz:0i for 7 variables, let arz:a2r:0; for 6 vari-
ables,  le t  arz:a2r :aza:0 i  and for  5 var iables,  Ie t  arr :  a2r :a2z
:  as r :  0 .

Any of these four alternatives wil l yield a usable cubic characteristic
equation. An example is given below of a weighted mean analysis of all

1 Theorem. If any real matrix of the order nX(mlk) andrankr:m be post-muitiplied
by its transpose, tr'r'o alternatives exist: if fr is nonnegative, the resulting symmetrical
matrix AA'of the rzth order is nonsingular;but if fr is negative, the matrix AA'is singular.
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the platinum metals produced by the Goodnews Bay Mining Co., of
Alaska, from 1934 to 1959, inclusive. The mean analysis and its matrix
are given below:

Platinum
Iridium

Osmium
Ruthenium
Rhodium
Palladium

1  . 3 584.38 per cent
11.49
2 2 1
0 .  1 8

0  . 3 9

84.J8  0

o  2 . 2 1  0

t1 .49  0 .  18 0 .39

I'he characteristic equation of this matrix is

tr3 - 86.98X' + 204.7384^, - 38.4467 : 0,

whose discriminant is positive, so that the latent roots are real. It there-
fore is unnecessary to render the matrix symmetrical before diagonaliza-
tion. The derived eigenvalues are 84.564, 0.206, and 2.210; and 100-T
:13.02. This may readily be charted either by the apical or orthogonal
projection.

Square matrices of the fourth order contain 16 elements; and therefore
4X4,  4X5,  4X6,  and in general  4X(4+k)  matr ices could be used for  16,
20,24, or in general 16+4k variables, where & is nonnegative. The de-
rived characteristic equations, however, are quartics, which are more
laborious to solve than cubics; and the l ive resulting coordinates must
be charted on the boundaries of hypertetrahedra of four dimensions. For
these reasons, and because matrices of the third order suffice for 9 or
any larger number of variables, the uti l ization of matrices of the fourth
order is not recommended.

Sulrlrany StarBlrnur

Three general methods have been presented for the classification and
charting of analyses that are recomputed to total 100 per cent. The first
method employs unsymmetrical matrices of the third order, from each of
which three eigenvalues and a trace are derived. These are uti l ized in
quadriplanar charting unless the eigenvalues include complex numbers.
A second method uses the same original matrices, but they are rendered
symmetricai before diagonalization, thus eliminating complex eigen-
values. A third method uses rectangular arrays of the order 3X(3+ft)
that are transformed into symmetrical matrices of the third order, after
which they are treated as in the first and second methods. This permits
the classification and charting ol 12, 15,18, or in general 9*3ft variables.
By substituting one or two zeros in the rectangular matrices, the third
method allows all analyses with more than 9 components to be uti l ized.
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And by substituting from one to four zeros in square matrices of the third

order, before multiplication by their transposes' either the first or the

second method permits the use of analyses with 8, 7 , 6, or 5 components'

I tmus tbeunde rs tood tha tnumer i ca l i nd i cesandg raphswh ich resu l t
from these three methocls are not comparable' Even analyses of 12 com-

ponents, classified and charted by the third method, cannot be tabu-

iated or graphecl with similar data obtained by the same method from 15

or more componenrs. A choice of methods that suits the problem in hand

is first rnude; thereafter oniy one method is used for each group of re-

lated analyses.

BrstrocnaPHY

Mathcmalics is l ike geology and mineraiogy in that no single exposi-

tion inciudes a complete discussion of all phases of a subject; and l.here-

fore for particular topics numerous books are needed' The appended

bibliography of books on matrices and related topics is not intended to

be an enumeration of all the principal treatises on these subjects. The

dozen cited books on matrices include only treatises of comparatively

recent origin that have been consulted by the writer in the preparation

o f th i spape r .They range f rome lemen ta ry t rea tmen ts too the rs tha ta re
too advanced to be readily assimilated by a non-mathematician, such as

the writer;but even the more abstruse of these discussions contain items

that may not elsewhere be available. An example is the volume by Fra-

zer ,  Duncan,  and Col lar  (1957),  which is  an advanced t reat ise;  yet  i t

includes four introductory chapters on matrix algebra that are readily

understandable and contain many numerical examples of great value'
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