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AssrRA.cr

A method is described for estimating the sound velocities at ambient conditions from
knor,vledge of the chemical composition and the refractive index These data can be deter-
mined from material existing as porvder or as very small grains. The method is useful for
oxide compounds, but apparently not for other compounds. By oxide compounds is meant
simpie oxides like Mgo, siiicates like MgzSio+, and complicated minerais iike tourmaline
wbere oxygen is the dominant anion.

The method is based upon recent work which shows that for oxide compounds, the
elastic moduli are functions of the specific volume only, and that the refractive indices obey
Drude's law. This means that both the elastic constants and the index of refraction are
functions only of the specific volume. By properly accounting for the molecular weight, it
is shown that the sound velocity is a function of the index of refraction. The data on oxides
shows that the sound velocity is linear with the quantity fr2- 1, were fl is the mean refrac-
tive index, for constant mean atomic weight. on the other hand, for the aikali halides the
sound velocity depends upon the atomic polarizabilities and the density, as r,r'ell as on fle- 1,
for constant mean atomic weisht.

INtnoluctro\T

Only a few physical properties can be measured on microscopically
sized soiids such as grains or powders; perhaps the easiest measurement is
the refractive index. The measurement of sound velocity, on the other
hand, is not an easy task under the best circumstances and becomes quite
difficult for small samples. The difficulty is compounded if the sample
is a crystalline solid of low symmetry. The relative difficulty of the two
measurements is demonstrated by the fact that there is a great amount of
refractive index data in the l iterature on oxides. while the data on sound
velocity are scanty by comparison.

Any method of using refractive index data to estimate the sound veloc-
ity data is valuable to researchers concerned with the mechanical prop-
erties of minerals and inorganic compounds. In this paper we show that
for oxide compounds, the longitudinal and shear sound velocities can be
estimated from two properties determinable on very small samples: (1)
the mean refractive index tr; and (2) a compositional parameter called the
mean atomic weight, M/p (the molecular weight divided by the number
of atoms p in the formula). It turns out that this new method is appar-
ently restricted to oxide compounds (simple oxides like Mgo, silicates like
n{g2SiOa, and complicated minerals l ike tourmaline).

1 Also at Lamont Geological Observatory, Columbia University.
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IOO2 ORSON L. ANDERSON

A large number of oxides have the same value of X'I/p, so that within

broad limits the index of refraction alone determines the sound velocity

irrespective of phase, composition, or crystall ine symmetry' This is

analogous to the determination of density from the refractive index (the

Gladstone-Dale Iaw) commonly used by mineralogists.

In the subsequent discussions, by sound velocity we mean the isotropic

sound velocitl' that a dense polycrystalline solid would have at zero

porositl,, and by refractive index we mean the arithmetic mean of the

crystalline ref ractive indices.
The proposed relation between sound velocity and refractive index is

based upon the fact that for oxides the elastic constants are unique func-

tions of the specific volume (Anderson and Nafe, 1965) and the refractive

index is a unique function of the density (Anderson and Schreiber, 1965)

As a result, b-v properly accounting for the molecular weight, we can show

that the sound veiocity is a function of the refractive index.

The empirical correlation between sound velocity and refractive index

is given in the next section. An explanation of this relation is developed

later on.

D.q.r,q ron OxrlBs

It turns out that a major parameter classifying the oxides is the mean

atomic weight, X{/p. X{ost data on sound velocity exist for oxides with a

mean atomic weight near 20. For such oxides, the sound velocities are

given b1' the following empirical equations:

v" : 3(n'? - 1) km/sec, (1)

vp : s(n'? - 1) km/sec, Q)

where v" and vn are the shear and compressional sound velocities'

These equations are plotted as solid l inesin Figs. 1 and 2. The datafor

the oxides are listed in Table I and plotted as open circles in Figs. I and 2.

It is seen that the correlation is valid for oxides representing various

molecular weights, crystal s1'mmetries, and compositions.

The sound velocity data are taken from tables l isted by Anderson and

Nafe (1965), and the refractive index data from tables l isted in Ref . 3 are

f rom Anderson end Schreiber  11965).
For oxides with the same refractive index, the mean atomic weight

increases as the sound velocity decreases. This effect is shown for three

garnets plotted in Figs. I and 2 as filled circles. The velocity data on two

natural garnets were reported bv Verma (1960). Garnet 1 consists of a

solid solution of spessarite and almandite, and garnet 2 is predominantl-v

almandite. The refractive index values for these garnets are given also by

verma as 1.814 and 1.817. The mean atomic weights calculated from

Verma's data are 24.0 and 24.5. The third garnet is synthetic, an yt-



ISOTROPIC SOUND VELOCITIE,S 1OO3

trium aluminum garnet grown at Beil Telephone Laboratories. The
elastic constants were reported privately by Spencer. The isotropic elas-
tic constants are computed by the Voight-Reuss-Hill averaging scheme
(Anderson, 1963) yielding the following values of the sound velocities:
vp:8.60 km/sec and vs:4.95 km/sec. The refractive index (Larsen and
Berman, 1934) is 1.833, and the value of M/p is 23.10. The elastic con-

o
o  0 5  r o  1 5  2 0

(h '2- l ) ;  n- ,  veer INDEX oF REFRACTIoN

Frc. 1. Shear sound velocity versus (i2-1) for oxides, at various values of M/p. The
solid line is Eq. (1) for mean atomic weight of 20. The dashed lines represent expected solu-
tions for high values of M/p.

stant data lor ZnO, where the mean atomic weight is 40.6, is given by
Bateman (1962). The resulting vaiues of velocity are: vp:5.96 km/sec
ond v":2.84 km/sec. These low velocities for a material with such a high
value of the refractive index, 2.03, suggest that a high value of M/p
materially lorvers the sound velocity. These data are plotted as crossed
circles in Figs. I and 2.

More velocity data need to be analyzed before the effect of the large
values of II/p on velocity can be conclusively determined. Our best
estimates are given by the dashed lines plotted in Figs. 1 and 2, which

4

o
4
q\
E
I

I

o
o
Jq

Ur
q



1OO4 ORSOT L. ANDERSON

represent guides for future work. These dashed lines must be regarded as
tentative.

The solid l ines in Figs. I and2 representing Eq. (1) and (2) are notl ikely
to be changed significantly by new data taken on solids with values of
M/p near 20. Eq. (1) and (2) are used to compute the sound velocities of
oxide compounds and minerals with M/p:20.5 + 1.5. These minerals are
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Frc. 2. Longitudinal sound velocity versus (tr2- 1) for oxides, at various values of M/p.

The solid line is Eq. (2) for mean atomic weight of 20. The dashed Iines represent expected

solutions for high values of M/p.

listed in Table II, along with the reported data on M/p, refractive index,
density, and the computed velocities. The refractive index and density
data are taken from Larsen and Berman (1934).

TUB RBrerroNSHrp BBTwBBN SouNr VBr,ocrrv eNo
RBpnactvo INoBx roR OxTDES

We shall now attempt to explain the empirical relationships described
in the previous section. In particular, we wish to demonstrate that for
oxide compounds with constant M/p, the sound velocities increase with

, ,F
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(n'?-1) and are determined solely by 1nz-1) irrespective of phase,
composit.ion, and symmetry. This is demonstrated by first discussing the
velocitv-density relationship and then the density-refractive index
relationship.

It was shown (Anderson and Nafe, 1965) that for oxide compounds the

Tanr L VaarerroN or Mne,sunro Sounn Vnlocrry wITH Mnasunnn Rnlnacuvr
h.rnnx ron Oxnr nNn Srr-rc.qrn ColpouNos

Nrlp I vp l

km/sec

Al2o3
Spinel
Mso
Topaz
Forsterite
Tourmaline
a-Qtartz
Vitreous Silica

Garnet 1
Garnet 2
Yttrium Aluminum Garnet

ZnO 40.6 5 . 6 7 6

20.40
20.32
20.20
20 45
20.10
19.40
20 03
20.o2

3.986
3 .63
J . J /

3 . 5 0
3 . 3 2
3 .  r 0
2 . 6 5
2 .20

4.247
4 183
4.  550

1 . 7 6 2
r . 7 2 7
I .  / J O

l . 7 r
1 . 6 5
t . 6 4
I . J J

1 . 4 6

2 . 1 1 5
1 .986
2 . O l
1  .89
l .  / J

1 .68
t . 3 2
1 . 1 3

10.86
9 . 9 4
9 . 5 t

9 .  5 5
8 . 4 7
8 . 3 1
7  . 0 7
5 .  t +

6.42
5 . 6 6
6 . 0 3
5 . 2 3
4 . 9 5
5 . 2 3
4.3r
J - l l

2 4 . 9
z + - J

23 .10

1  .814
1 .8 r7
1 .833

2 .29
2 . 3 0
2 . 3 6

8 .47
8 . 5 2
8 .60

5 .96

4 . 7 7
4 . 7 7
4 . 9 5

2 . 8 4

bulk modulus at atmospheric pressure, B6, is related to the specific vol-
ume (per ion pair), V6, from compound to compound by the equation

Bo : liYo-*, (3)

where K is a constant and x is a number between 3 and 4. Vo was defined
AS

vo : 4, (4)
PP

where p is the density. It was also shown that for a great many oxide
compounds the mean atomic weight M/p is very nearly equal to the
value 20.5. Consequently, for those solids with constant M/p, the bulk
modulus increases from solid to solid, as the xth power of the density. The
same generalization is true for the relationship between shear modulus
and volume. As a consequence, the sound velocities can be defined as
explicit functions of density

v" : l(,(|,{/p) 'pv,

vo :  Kz(M/p).n, .

(s)
(6)
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Substance

Fused Silica
Tridymite
Cristobalite
Leucite
Keatite

Carnegieite

Orthoclase

Anorthoclase

Microcline

Albite

Chalcedony

Carnegieite

Quartz
Anorthite
Enstatite
Coesite
Sarcolite

Diopside
Hypersthene
Schefierite

Jefiersonite
Pigmnite

Pyrope
Kyanite
Spinel
Periclase
Corundum
Stishovite

Ideal
Chemical
Formula

SiOr
SiOr
SiOz
KAlSirOo
SiOz

NaAlSiOr
KAISisOT
KNaAI:SioOr
KAlSirOe
NaAISiaOa
SiOr

Molec-
uur

Weight
M

Mean
Atomic
Weight

M/p

Memured

Refrac-

t ive Index

n

Measured
Density

2 . 2 0
2 2 7
2 3 4
2 4 7
2 5 0

ORSOII/ L. ANDERSON

T.q.er-o II. Car-cur-erno Soulrn Vnr,ocrrrEs tr'RoM RBrne.ctrvr Imnox Dau

loR SuBSTANcEs OBEvTNG Btncn's LAw (M/p-20)

(ranked in order of increasing refractive index)

NaAlSiOr
SiOr
CaAlrSirOa
MgSiOr
SiOr
Ca3Al2Si3Ou

(Mg, Ca)
AbSiOs
AloSirora
AloSi:Ore
MgzSiOr

MgSiOr
MgSiOo
NaAlSirOo
AlrsiO6
(Mg, Fe)uSiOn

CaMgSirOe
MgSiOa
MgCaSizOr
MgCaSirOo
MgSiOa

MgzAhSioorr
AlsSiOr
MgAbOr
Meo
AbOa
SiOr

142.O7
60 09

278 22
100 41
60.06

498 47

20 29
20 03
2 t  4 0
20 08
2 0 . 0 3
2 1 . 6 7

-22 OO
20 25
20 28
20 28
20  10

60 09
60 09
60 09

218.26
60 09

142 07
278 35
540 6
2'r8 35
262 25

60.09

20 03
20 03
20 03
2 1 . 8 2
2 0 . 0 3

I ,r59

|  471
1 ,186

1 . 5 0 1
I  5 1 9

1 676
1 . 6 8 8
1 . 6 8 8
r . 6 9 4
1 . 6 9 7

1 705
1 . 7 2 0
1 723
1. 736
1 . 7 6 2
1 806

I -129
1 16+
1 208
1 . 2 5 3
1 . 3 0 i

1  3 1 3
1 . 3 1 6
1 . 3 2 3
1 328
1 340
I  356

20 29
2 1  4 1
20.79
2 1  4 l
2 0  1 7
20 03

1  5 2 1
|  522
|  < ) t

1  . 5 2 6
1 530

1 .s36
1 547
I  583
1 590
1 . 5 9 5
1 .608

1 635
1 639
| 644
1 647
1 652

2 5 1
2 5 5
2 .58
2 5 6
2 6 1
2 6 3

2 6 2
2 6 5
2 . 7 7
2 8 7
2 9 2
2 9 3

3 t 2
. ,  t J

3 2 3
3 0 3
3 2 2

3 1 8
3 2 8
3 4 3
|  1 1

3 . 3 4

3 . 2 8
3 3 7
3 3 9
3 3 9
3 4 2

3  5 1
3 6 0
3 6 0
3.  .58
4 0 0
1 . 2 8

1 359
1 393
1 506
1 . 5 2 8
1 544
1 586

Akermanite
Andalusite
Mullite
Mullite
Forsterite

Enstatite
Clinoenstatite

Jadeite
Sillimanite
Olivine

272 66
162 05
425 94
425.94
140 73

100 41
100 41
202 t6
162 05

?

20 08
20 08
2 0  2 1
20 25

(20 10?)

21.65
20 08
23 07
21.65
20 08

20 29
20 25
20 32
20 1,6
20 39
20.o3

t  673
r 686
r io2
|  713
r 729

r i36
| 739
|  752
r 779
r . 7 9 2

I  .809
I 849
I  .849
1  . 8 7 0
I 880

2 1 6 . 5 8
1 0 0 . 4 1
184 58
216 58
100 41

4 0 5 . 8 5
162 05
142 28
40 32

1 0 1  . 9 6
60 09

1 . 9 0 7
1 .960
1 990
2 010
2 100
2 . 2 6 2

Calc
Long.

Velocity
5 ( n r - 1 )3 ( n r - 1 )

4 1
4 . 2

4 6

4 8

5 0
. ) l

5 1
J 1

5 3
5 3

5 . 5
5 . 5
5 . 6
5 . 6

5 7
5 . 9
6 0
6 0
6 3
6 8

5 6
5 8
6 0
6 3
6 5

6 . 6

6 . 6

6 6

6 6

6 7

6 8

6 8
7 . O
7 . 5
7 . 6
7 7
7 9

8 4
8 4
8 5
8 6
8 6

8 7
8 7
8 8
8 9
9 0

9 0
a ?
9 . 2
9 . 4
9 . 4

9 5
9 8

1 0 0
1 0 0
1 0 . 5
1 1  . 3
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In Eq. (5) and (6) the constants Kr and Kz are written as functions of

the mean atomic weight \{/p, to account for substitution of densitl- for

volume in Eq. (1). The values of the exponents in Eq. (5) and (6), y and

z, will depend upon the value of x in Eq. (S) and the corresponding expo-

nent in a similar expression for the shear modulus. If x is 3, then y and z

should be 1. In any case y andz wil l be close to unily, though perhaps

slightly larger.
Equation (3) also holds for alkali halides, sul6.des, selinides, tellurides,

or group IVA solids; but in these classes of solids the value of x is be-

tween 1 and4f 3, not between 3 and 4. As a consequence, Eq. (3) does not

lead to velocity-refractive index relationships similar to Eq. (5) and (6).

we now proceed to the density-refractive index correlation. It has been

shown, that for the same class of compounds for which Eq' (3) is valid,

Drude's law is valid, that is (Anderson and Schreiber, 1965)

= :  
K ' (M /p )  Q )

from material to material. In other words, for oxides with a constant

value of IIfp, the ambient density is determined solely by the mean

refractive index. The value of the constant diminishes as the value of

I{/p increases.
Substituting Eq. (7) into Eq. (5) and (6), we find

v " :  k ' (M /p ) . ( f i 2  -  1 )Y ,

vo :  kr(M/p) . (n 'z  -  I ) ' ,

(8)

(e)

where y and z are close to unity, and kr and kz are n€w functions of the

mean atomic weight.
We see that Eq. (8) and (9) are the same as Eq. (1) and (2) if the expo-

nents y and z are unity. We further see that the slopeof the curve be-

tween velocity and (nt- 1) is dependent upon the value of nl/p.

TuB Rnr-erroNsurp BnrwBoN SouNo Ver-ocrrv eNo

RBrn.q.ctrvr INtnx loR ALKALT Har-rlns

Figures I and 2 and Eq. (1) and (2) show that in oxides the ratio of

sound velocity to fr2-1 is constant for constant M/p. That is, density,

structure, and molecular polaizability do not affect the ratio vo

/ (n'- 1). We now demonstrate that molecular polarizabil ity and density,

as well as mean atomic weight, affect the tatio vnf (n2-1) in alkali

haiides.
It has been shown (Anderson and Nafe, 1965) that to a good approxi-

mation the relationship between bulk modulus, B6, and specific volume

(per ion pair), V6, from compound to compound in the alkali halide

group, is given by:
BoVo : constant. (10)
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We now replace V6 by using the appropriate formula for the refractive
index. we are faced with the fact that there are two theoretical formulas
to choose between: the Lorentz-Lorenz reiation and the Drude relation.
l{ott and Gurney (1910) have discussed the application of both these
formulas to the alkali halides and have come to the conclusion that it is
diff icult to chose between them on theoretical grounds, but that on ex-

1 0  t 2  t 5
a = 4 * d _

2  3  4  5  6  7 1 9 1 0
:  POLARIZABIL ITY SUM OF CATION AND ANION

Irrc.3. The ratio B0/(flr-1), rvhere Bo is butk modulus, versus the polarizabilitysum
for alkali halides. The solid line is Eq. (13).

perimental grounds the Drude relationship is
with the data. Taking the Drude formula

n 2  -  1  : 4 r \ ,
vo

where a is the polarizability of each ion pair and
and substituting (11) into (10), we have

Bo constant

n 2 - 1  d

slightly more consistent

( 1 1 )

N is Avogadro's number,

(r2)
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which should hold for the alkaii halides. Replacing a bv a-.{a-, where

these refer to the polari zability of the positive and negative ion, we have:

-B", : '" l ' t1ll. (13)
n2 - 1 d+la-

Eq. (13) is substantiated byplotting Be/(n'z- 1) versus (o**o-) in Fig. 3.

The values of Bo are taken from Anderson (1963) and the values of the

Tesln III. VeararroN or Bur.x Monur-us wrln Momcur-et
Por-.mtz.qnrr-rrv lon Ar. .a.r,t Her,rons

LiF
NaF
KF
RbF

LiCI
NaCl
KC]
RbCI

0 .03
0 .  1 8
0 . 8 3
1 . 4 0

0 0 3
0 .  1 8
0 . 8 3
1 4 0

0 . 0 3
0 .  1 8
0 . 8 3
1 . 4 0
2 . 4 2

0 .03
0 .  18
0.  83
1 .40
) 4 )

1 . 0 4
t . 0 4
1 . 0 4
1 . ( X

3 . 6 6
3 . 6 6
3 . 6 6
3 . 6 6

1 . 0 7
1 . 2 2
r . 8 7
I  l t

4 . 8 0
4 . 9 5
5 . 6 0
6 . r 7
7  . r 9

1  . 7 5
1 . 2 5
1 . 1 3
l . r 9

2 . 1 6
1 . 6 2
1  .33
1 .33
r . 7 8

Bulk
Modulus

Bo

Index of

Refraction
Function

0 .92
0 .74
0 8 5
0.93

Cation
Polarization

q+

Anion
Polarization

d _

Molecuiar
Polarization

a :d++a -

Ratio: Bulk

Modulus

/n2_ l

Bo/( i r ' -  1)

kilobars

180
20r
l6t
136

119
130
tr7
10,1
88

756
657
375
294

LiBr
NaBr
KBr
RbBr
CsBr

257
2t r
155
138
156

188
t6r
124
1t2
t25

4 . 7 7
4 . 7 7
4 . 7 7
4 . 7 7
1 . 7 7

7  . r 0
7  . 1 0
7  . t o
7  . l o
7 . 1 0

LiI
NaI
KI
RbI
CsI

2 . 8 0
1 9 1
r . 6 9
1 .63
2 . 0 3

7  . 1 3
7  . 2 8
7 .93
8 . 5 0
9 . s 2

o /

84
/ J

69
62

ionic polarizabilities and the index of refraction are taken from Waxler

and Weir (1965). The pertinent data are l isted in Table III. Eq. (13)

shows that molecular weight and density do not affect the ratio of

modulus to n2-1. The dimensions of velocity, since it includes density

as well as modulus, must therefore lead to a different dependence from

that seen in Eq. (13). Manipulation of Eq. (10) and (11) leads to

698
456
319
273

3 1 5
252
182
162
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{B/p lM/p
11 1: 

constanl 
,("-+"J

By analogv, the ratio of the longitudinal modulus to n2 - 1 should be

vp \/ Ivr/p
^ -  _ :  C o n s t a n t -  - .

t/M/P (1s)
n " -  r p(o* lo - )

Comparing Eq. (15) with Eq. (7), we see that, at constant mean atomic

o.5  0 .6  0 .7  0  80 .9  t .0  1 .2  t .5

UNITS

(14)

o
o

4.0

9 ,

A

U
a
o

Y

c

Frc. 4. The ratio vrf(nz-t), where vo is the longitudinal sound velocity, versus
{M/p/c@1la-r) for alkali halides. The solid line is Eq. (15).

weight, for alkali halides vo is determined by density and molecular
polarization as well as index of refraction, while for oxides vo is deter-
mined only by index of refraction.

A piot of the data for alkali halides is given in Fig. 4 which confirms the
validity of Eq. (15). The pertinent data aro l isted in Table IV.

DrscussroN

The primary reason that Eq. (1) and (2) work for oxides is that for a
great number of oxide compounds the mean atomic weight changes vcry
little from compound to compound, even though the density may change

'-),szlll
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considerably. This constancy of NI/p, demonstrated in Table If, is not
characteristic of other classes of solids. In particular, the atomic weight
of the alkali metals, alkali halides, and the covalent elements and com-
pounds changes greatlv from solid to solid in a group. Consequently one
cannot replace the modulus-volume relationship, such as Eq. (3), with a
simple velocity-density relationship.

Tarlr IV. Vanr.lrron op Sounn Vrr-ocrrv wrrn Pan.llmren

t/xt/p/p. ron Alrlu Her,rors

1011

Long
Velocity

Mean
Atomic
Weight

Shear
Velocity

Density

gm/cc

Molecular
Polariza-

tion

Index of
Refraction
Function

Ratio:
Long

\relocity

/nz-7
vpl (n2 - 1)

\/M/p

M/p

T,iF
NaF
KF
RbF

LiCI
NaCl
KCI
Rbcl

LiI
NaI
KI
RbI
CsI

12  97
21 00
29 -O5
52  25

2 1 . 2 0
29 22
3 7 . 2 8
60 47

7 1 4

1 6 4
3 9 5

.5 25
4 5 5
3 . 9 4
3 . 0 8

3 6 2
3 2 8
2 8 8
2 5 8
2 '/O

4 2 9
3 3 3
2 .  5 8
2 1 0

3 0 6
2 5 9
2 1 1
1 6 1

2 . 6 4
2 . 8 r
2 5 3
2 8 8

1 . 2 7
1 3 5
1 . 1 4
I  . 0 3

0 . 6 0
0 6 5
0 6 8
0 5 4

o . 2 8
o .32
0 .36
0 . 3 4
o 2 7

7 . 7 6
7  . 6 4
5 4 6
4 . 2 5

2 0 8
2 . 1 6
1  . 9 9
2 8 0

3 . 0 1
3 6 4
3 . 4 5
2 5 9

LiBr
NaBr
KBr
RbBr
CsBt

43.43
5 l  . 4 5
5 9 . 5 0
82 70

to6 20

3 1 7
3 2 0
2 . 7  5
3 . 3 5
4 4 3

4 0 6
3 6 7
3 1 3
3 5 5
4 5 1

4 8 0
4 9 5
5 6 0
6 t 7
7 1 9

7 . 2 8
?  . 9 3
8 . 5 0
9 5 2

2 1 6
1 . 6 2
1  . 3 3
1 3 3
1 7 8

2 8 0
1  . 9 1
1 6 9
t . o J

2 .03

0 . 4 0
0 4 5
0 5 0
0 4 4
0 3 2

1  . 6 8
2 . O 3
2 t 7
1 9 4
1 5 2

66 93
74 68
8 3  . 0 1

106.40
129 9l

2 .  8 5
2 7 3
2 . 5 4
2 2 0
2 2 1

The second reason that Eq. (1) and (2) apply to oxides is that the bulk
modulus and shear modulus are strongly dependent upon the volume,
but not on the valence. Alkali metals, alkaii halides, fluorides, and
divalent compounds depend on the value of Ve only to the inverse first
power. Consequently, even if the mean atomic weight were constant, the
velocity would not increase with density. It would be virtually indepen-
dent of densit1.. A further complication is that in most nonoxides the
sound velocity depends upon the valence.

Another important difference between the oxides and the other classes
of solids mentioned is the fact that Drude's law, Eq. (7), is uniformlv
applied to oxide compounds. That is, for oxide compounds with constant
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M/p, the constant K3 in Eq. (7) does not vary significantly from com'
pound to compound. But for alkali halides, as shown by Eq. (11), the

index of refraction changes from compound to compound because the
polarizability changes (Table III). :

The behavior of the oxide compounds from compound to compound is

very much like the behavior of a classical solid under pressure. That is to

say, if an aikali metal or an alkali halide is compressed, a new velocity

and a new refractive index will be associated with the new density; and

the subsequent relationship between sound velocity and refractive index
produced b1' compression will be similar to that special relationship for

oxides, Eq. (1) and (2), which is produced by compositional variation.

This will now be demonstrated in the following equations.
The variation of bulk modulus with pressure is independent of pressure

and is near the number 4lor a great many solids. Taking

dB
-  o -  I

dP

dP
B  :  -  - ,

dv/v

dB dV_ : _ B _ .
R V

B  / V \  P

B o  \ v o , /

However, since the value of dB/dP is always near 4 (that is, it has nearly

the same value as x in Eq. (3)), the variation of B with V due to pressure

using Eq. (1S) is nearly the same as the variation of Bo with V6 due to

compositional changes expressed by Eq. (3). The sound velocity defined

from the bulk modulus alone is

, :  / : :  / * ( ; ) ' ' - " ' ' '  
( 1e )

where B is the constant dB/dP. Eq. (19) is the same form shown by Eq.

(5) and (6). If dB/dP is 3, the value of the exponent of p in Eq' (19) is

unity. Probabl.v the exponent of p is slightly larger than unity for most

solids. By analogy, similar relations to Eq. (19) hold for the shear and

longitudinal sound velocities.
The density-refractive index relationship for many solids under pres-

sure obeys either the Lorentz-Lorenz Iaw or Drude's law'(Waxler and

Weir, 1965). (Exceptions include Diamond and perhaps MgO.) The sub-

(16)

and recalling that

we have

The above integrates into

(.17)

(18)
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ject has been reviewed by Hamann (1957). Consequentlv solids under
pressure obey some functional relationship equivalent to Eq. (7), al-
though Bq. (7) has been presented to represent data for dif ierent oxides
at ambient conditions. Thus the formalism which leads from Eq. (3) to
Eq. (8) and (9) holds for most solids under pressure.

The distinction of oxide compounds is that not only do thel obey Eq.
(8) and (9) as individual solids under pressure, but that as a class the
sound velocity and refractive index vary from compound to compound at
ambient conditions according to Eq. (8) and (9).

ft seems clear that as far as the isotropic values of the optical constants
and the velocity constants are concerned, oxide compounds with constant
M/p near 20 or 2l can be treated as one solid,with numerous poiy-
morphic states. This is an important simplification since there are a large
number of such oxide compounds, as demonstrated by Table II. Fur-
thermore, these solids include many which are important to current
research in geophysics, electronic materials, and ceramics.

Finally, we comment on those few oxides which fail to conform to Eq.
(5) and (6). Such oxides wil l be those which either do not obey Eq. (3) or
Eq. (7). One example is TiO2, which has an abnormally high value of
the refractive index for its densitv and molecular weight. This is prob-
ably due to the same cause which leads to a high dielectric constant. Von
Hippel (1954) ascribes the high dielectric constant to the TiOo constella-
tion which has binding in transition between polar and nonpolar types.
Another example is ZrOz.
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