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AN APPROXIMATE METHOD FOR COMPUTING THE
ISOTROPIC SOUND VELOCITIES USING
REFRACTIVE INDEX DATA

ORrsON L. ANDERSON,! Bell Telephone Laboratories, Incorporated,
Murray Hill, New Jersey.

ABSTRACT

A method is described for estimating the sound velocities at ambient conditions from
knowledge of the chemical composition and the refractive index. These data can be deter-
mined from material existing as powder or as very small grains. The method is useful for
oxide compounds, but apparently not for other compounds. By oxide compounds is meant
simple oxides like MgO, silicates like Mg,Si0,, and complicated minerals like tourmaline
where oxygen is the dominant anion.

The method is based upon recent work which shows that for oxide compounds, the
elastic moduli are functions of the specific volume only, and that the refractive indices obey
Drude’s law. This means that both the elastic constants and the index of refraction are
functions only of the specific volume. By properly accounting for the molecular weight, it
is shown that the sound velocity is a function of the index of refraction. The data on oxides
shows that the sound velocity is linear with the quantity fi2— 1, were fi is the mean refrac-
tive index, for constant mean atomic weight. On the other hand, for the alkali halides the
sound velocity depends upon the atomic polarizabilities and the density, as well as on fi2—1,
for constant mean atomic weight.

INTRODUCTION

Only a few physical properties can be measured on microscopically
sized solids such as grains or powders; perhaps the easiest measurement is
the refractive index. The measurement of sound velocity, on the other
hand, is not an easy task under the best circumstances and becomes quite
difficult for small samples. The difficulty is compounded if the sample
is a crystalline solid of low symmetry. The relative difficulty of the two
measurements is demonstrated by the fact that there is a great amount of
refractive index data in the literature on oxides, while the data on sound
velocity are scanty by comparison.

Any method of using refractive index data to estimate the sound veloc-
ity data is valuable to researchers concerned with the mechanical prop-
erties of minerals and inorganic compounds. In this paper we show that
for oxide compounds, the longitudinal and shear sound velocities can be
estimated from two properties determinable on very small samples: (1)
the mean refractive index i; and (2) a compositional parameter called the
mean atomic weight, M/p (the molecular weight divided by the number
of atoms p in the formula). It turns out that this new method is appar-
ently restricted to oxide compounds (simple oxides like MgO, silicates like
Mg»SiOy, and complicated minerals like tourmaline).

! Also at Lamont Geological Observatory, Columbia University.
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A large number of oxides have the same value of M/p, so that within
broad limits the index of refraction alone determines the sound velocity
irrespective of phase, composition, or crystalline symmetry. This is
analogous to the determination of density from the refractive index (the
Gladstone-Dale law) commonly used by mineralogists.

In the subsequent discussions, by sound velocity we mean the isotropic
sound velocity that a dense polycrystalline solid would have at zero
porosity, and by refractive index we mean the arithmetic mean of the
crystalline refractive indices.

The proposed relation between sound velocity and refractive index is
based upon the fact that for oxides the elastic constants are unique func-
tions of the specific volume (Anderson and Nafe, 1965) and the refractive
index is a unique function of the density (Anderson and Schreiber, 1965)
As a result, by properly accounting for the molecular weight, we can show
that the sound velocity is a function of the refractive index.

The empirical correlation between sound velocity and refractive index
is given in the next section. An explanation of this relation is developed
later on.

DaTa FOR OXIDES

1t turns out that a major parameter classifying the oxides is the mean

atomic weight, M/p. Most data on sound velocity exist for oxides with a

mean atomic weight near 20. For such oxides, the sound velocities are
given by the following empirical equations:

ve = 3(d2 — 1) km/sec, (1)

vp = 5(fiz — 1) km/sec, 2)

where v, and v, are the shear and compressional sound velocities.

These equations are plotted as solid lines in Figs. 1 and 2. The data for
the oxides are listed in Table T and plotted as open circles in Figs. 1 and 2.
Tt is seen that the correlation is valid for oxides representing various
molecular weights, crystal symmetries, and compositions.

The sound velocity data are taken from tables listed by Anderson and
Nafe (1965), and the refractive index data from tables listed in Ref. 3 are
from Anderson and Schreiber (1965).

For oxides with the same refractive index, the mean atomic weight
increases as the sound velocity decreases. This effect is shown for three
garnets plotted in Figs. 1 and 2 as filled circles. The velocity data on two
natural garnets were reported by Verma (1960). Garnet 1 consists of a
solid solution of spessarite and almandite, and garnet 2 is predominantly
almandite. The refractive index values for these garnets are given also by
Verma as 1.814 and 1.817. The mean atomic weights calculated from
Verma’s data are 24.0 and 24.5. The third garnet is synthetic, an yt-
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trium aluminum garnet grown at Bell Telephone Laboratories. The
elastic constants were reported privately by Spencer. The isotropic elas-
tic constants are computed by the Voight-Reuss-Hill averaging scheme
(Anderson, 1963) yielding the following values of the sound velocities:
vp=8.60 km/sec and v,=4.95 km/sec. The refractive index (Larsen and
Berman, 1934) is 1.833, and the value of M/p is 23.10. The elastic con-
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F16. 1. Shear sound velocity versus (i2—1) for oxides, at various values of M/p. The
solid line is Eq. (1) for mean atomic weight of 20. The dashed lines represent expected solu-
tions for high values of M/p.

stant data for ZnO, where the mean atomic weight is 40.6, is given by
Bateman (1962). The resulting values of velocity are: v,=35.96 km/sec
and v,=2.84 km/sec. These low velocities for a material with such a high
value of the refractive index, 2.03, suggest that a high value of M/p
materially lowers the sound velocity. These data are plotted as crossed
circles in Figs. 1 and 2.

More velocity data need to be analyzed before the effect of the large
values of M/p on velocity can be conclusively determined. Our best
estimates are given by the dashed lines plotted in Figs. 1 and 2, which
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represent guides for future work. These dashed lines must be regarded as
tentative.

The solid lines in Figs. 1 and 2 representing Eq. (1) and (2) are notlikely
to be changed significantly by new data taken on solids with values of
M/p near 20. Eq. (1) and (2) are used to compute the sound velocities of
oxide compounds and minerals with M/p=20.5+1.5. These minerals are
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F1c. 2. Longitudinal sound velocity versus (fi2— 1) for oxides, at various values of M/p.
The solid line is Eq. (2) for mean atomic weight of 20. The dashed lines represent expected
solutions for high values of M/p.

listed in Table I1, along with the reported data on M/p, refractive index,
density, and the computed velocities. The refractive index and density
data are taken from Larsen and Berman (1934).

THE RELATIONSHIP BETWEEN SOUND VELOCITY AND
REFRACTIVE INDEX FOR OXIDES

We shall now attempt to explain the empirical relationships described
in the previous section. In particular, we wish to demonstrate that for
oxide compounds with constant M/p, the sound velocities increase with



ISOTROPIC SOUND VELOCITIES 1003

(i2—1) and are determined solely by (fiZ—1) irrespective of phase,
composition, and symmetry. This is demonstrated by first discussing the
velocity-density relationship and then the density-refractive index
relationship.

It was shown (Anderson and Nafe, 1965) that for oxide compounds the

TaBLE 1. VARIATION OF MEASURED SOUND VELOCITY WITH MEASURED REFRACTIVE
INDEX FOR OXIDE AND SILICATE COMPOUNDS

M/p ‘ a ‘ f ‘ -1 | v v,
Phase | -
gm/cc I km/sec
AlL:O; 20.40 3.986 1.762 | 2.115 | 10.86 | 6.42
Spinel 20.32 3.63 | 1.727 1.98 | 9.94 5.66
MgO 20.20 3.57 1.736 2.01 9.57 6.03
Topaz 20.45 3.50 1.71 1.89 9.55 5.23
Forsterite 20.10 | 3.32 1.65 | 1.73 | 8.47 | 4.95
Tourmaline 19.40 3.10 1.64 1.68 8.31 5.23
a-Quartz 20.03 2.65 1.55 1.32 7.07 | 4.31
Vitreous Silica 20.02 2.20 1.46 1.13 5.74 3.77
Garnet 1 24.9 4.247 1.814 2.29 8.47 | 4. 7
Garnet 2 24.3 4.183 1.817 2.30 8.52 4.77
Yttrium Aluminum Garnet | 23.10 4.550 1.833 2.36 8.60 | 4.95
Zn0 40.6 5.676 2.03 3.04 5.96 | 2.84

bulk modulus at atmospheric pressure, By, is related to the specific vol-
ume (per ion pair), Vo, from compound to compound by the equation

By = KV, )

where K is a constant and x is a number between 3 and 4. V, was defined
as
2M
Vo="
pp
where p is the density. It was also shown that for a great many oxide
compounds the mean atomic weight M/p is very nearly equal to the
value 20.5. Consequently, for those solids with constant M/p, the bulk
modulus increases from solid to solid, as the xth power of the density. The
same generalization is true for the relationship between shear modulus
and volume. As a consequence, the sound velocities can be defined as
explicit functions of density

ve = Ki(M/p)-p?, (5
vp = Kao(M/p)-p2. (6)

) 4)
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TABLE II. CALCULATED SOUND VELOCITIES FROM REFRACTIVE INDEX DaTa
FOR SUBSTANCES OBEVING BircH’s Law (M /p=220)

(ranked in order of increasing refractive index)

| Cale Calc.
Tdeal Molec- Meax.1 Measured Measured _.‘ahc;.%r Long.
Substance Chemical ul'a 1 Ato.mlc .Reme Density He—1 ¥ e_lm'll_\' Ve_loc]ty
Formula Weight Weight |tive !ndex 3(n2—1) | 5(m2—1)
M | M/p n e B —
| fomi /aec
Fused Silica Si02 60.09 20,03 1.459 2.20 1.129 | 3.4 5.6
Tridymite SiOe 60.09 20.03 1.471 2.27 1.164 3.3 5.8
Cristobalite SiOe 60.09 20.03 1.486 2.34 1.208 3.6 6.0
Leucite KAISi:06 218.26 21.82 1.501 2.47 1.253 3.8 6.3
Keatite Si0: 60.09 20.03 1.519 2.50 1.307 3.9 6.5
Carnegieite NaAlSiOq4 142.07 20.29 1.521 2.51 1.313 3.9 l 6.6
Orthoclase KAISizOs 278.35 21.41 1.522 255 1.316 3.9 6.6
Anorthoclase | KNaAlSicO | 540.6 20.79 1.524 2.58 1.323 ‘ .0 6.6
Microcline K AlSi;0s 278.35 21.41 1.526 2.56 1.328 4.0 6.6
Albite NaAlSisOs 262.25 20,17 1.530 2.61 1.340 | 4.0 6.7
Chalcedony Si0s 60.09 20.03 1.535 2.63 1.356 4.1 6.8
Carnegieite NaAlSiOs 142.07 20.29 1.536 2.62 1.359 4.1 6.8
Quartz Si02 60.09 20.03 1.547 2.65 1.393 4.2 7.0
Anorthite | CaAlSi:Os 278.22 21.40 1.583 2.77 1.506 4.5 7.5
Enstatite MgSiOs 100.41 20.08 1.590 2.87 1.528 4.6 7.6
Coesite SiO2 60.06 20.03 1.595 2.92 1.544 4.5 7=7
Sarcolite CasAlSiz0n 498.47 21.67 1.608 2.93 1.586 4.8 7.9
Akermanite (Mg, Ca)sSially| 272.66 |~22.00 1.635 3.12 1.673 5.0 8.4
Andalusite AbSiOg 162.05 20.25 1.639 3.15 1.686 5.1 8.4
Mullite AlSiO13 425.94 20.28 1.644 3.23 1.702 5.1 8.5
Mullite AlsSiz013 425.94 20.28 1.647 3.03 1.713 5.1 8.6
Forsterite Mg2Si04 140.73 20.10 1.652 3.22 1.729 5.2 8.6
Enstatite MgSiOs 100.41 20.08 1.654 3.18 1.736 532 8.7
Clinoenstatite | MgSiOs 100.41 20.08 1.655 3.28 1.739 52 8.7
Jadeite NaAlSi20s 202.16 20.21 1.650 3.43 1.752 543 8.8
Sillimanite AbLSiOs 162.05 20.25 1.677 31123 | 1.779 543 8.9
Olivine (Mg, Fe)2SiOs ? (20.10?) 1.671 3.34 1.792 | 5.4 9.0
Diopside CaMgSi:0s 216.58 21.65 1.676 3.28 1.809 i 5.4 9.0
Hypersthene MgSiOs 100.41 20.08 1.688 B3 1.849 5.5 9.2
Schefferite MgCaSi204 184.58 23.07 1.688 3.39 1.849 | 5.5 9.2
Jeffersonite MgCaSi:0s 216.58 21.65 1.694 3.39 1.870 5.6 9.4
Pigeonite MgSiOs 100.41 20.08 1.697 3.42 1.880 5.6 9.4
|

Pyrope Mg:ALSisOw | 405.85 20.29 1.705 3.51 1.907 | 5.7 | 9.5
Kyanite AbSiO 162.05 20.25 1.720 3.60 1.960 5.9 9.8
Spinel MgAlLOs 142.28 20.32 1.723 3.60 1.990 | 6.0 10.0
Periclase MgO 40.32 20.16 1.736 3.58 2.010 6.0 10.0
Corundum AlLOs 101.96 20.39 1.762 4.00 2.100 6.3 10.5
Stishovite Si0: 60.09 20.03 1.806 4.28 2.262 6.8 11.3
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In Eq. (5) and (6) the constants K; and K, are written as functions of
the mean atomic weight M/p, to account for substitution of density for
volume in Eq. (1). The values of the exponents in Eq. (5) and (6), y and
z, will depend upon the value of x in Eq. (3) and the corresponding expo-
nent in a similar expression for the shear modulus. If x is 3, then y and z
should be 1. In any case y and z will be close to unity, though perhaps
slightly larger.

Equation (3) also holds for alkali halides, sulfides, selinides, tellurides,
or group IVA solids; but in these classes of solids the value of x is be-
tween 1 and 4/3, not between 3 and 4. As a consequence, Eq. (3) does not
lead to velocity-refractive index relationships similar to Eq. (5) and (6).

We now proceed to the density-refractive index correlation. It has been
shown, that for the same class of compounds for which Eq. (3) is valid,
Drude’s law is valid, that is (Anderson and Schreiber, 1965)

nz—1

= Ks(M/»p) (N

from material to material. In other words, for oxides with a constant
value of M/p, the ambient density is determined solely by the mean
refractive index. The value of the constant diminishes as the value of
M/p increases.
Substituting Eq. (7) into Eq. (5) and (6), we find
vs = ki(M/p)- (2 — 1)7, 8)
vp = ko(M/p)- (02 — 1)7, )
where y and z are close to unity, and k; and ke are new functions of the
mean atomic weight.
We see that Eq. (8) and (9) are the same as Eq. (1) and (2) if the expo-
nents v and z are unity. We further see that the slope-of the curve be-
tween velocity and (i2—1) is dependent upon the value of M/p.

Tur RELATIONSHIP BETWEEN SOUND VELOCITY AND
REFRACTIVE INDEX FOR ALKALT HALIDES

Figures 1 and 2 and Eq. (1) and (2) show that in oxides the ratio of
sound velocity to iz—1 is constant for constant M/p. That is, density,
structure, and molecular polarizability do not affect the ratio vy
/(iiz2—1). We now demonstrate that molecular polarizability and density,
as well as mean atomic weight, affect the ratio v,/(i*—1) in alkali
halides.

It has been shown (Anderson and Nafe, 1965) that to a good approxi-
mation the relationship between bulk modulus, By, and specific volume
(per ion pair), Vo, from compound to compound in the alkali halide
group, is given by:

BV, = constant. (10)
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We now replace Vy by using the appropriate formula for the refractive
index. We are faced with the fact that there are two theoretical formulas
to choose between: the Lorentz-Lorenz relation and the Drude relation.
Mott and Gurney (1940) have discussed the application of both these
formulas to the alkali halides and have come to the conclusion that it is
difficult to chose between them on theoretical grounds, but that on ex-
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F1e. 3. The ratio Bo/(f2—1), where By is bulk modulus, versus the polarizability sum
for alkali halides. The solid line is Eq. (13).

perimental grounds the Drude relationship is slightly more consistent

with the data. Taking the Drude formula
n2—1=47r%) (11)

0
where a is the polarizability of each ion pair and N is Avogadro’s number,
and substituting (11) into (10), we have
Bo_ __ constant

=—, 12
n?—1 @ (12)
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which should hold for the alkali halides. Replacing a by a;+a_, where

these refer to the polarizability of the positive and negative ion, we have:
B0 e (13)

n—1 apta-

Eq. (13) is substantiated by plotting Bo/(n2—1) versus (ey+a) in Fig. 3.
The values of By are taken from Anderson (1963) and the values of the

TasLe III. VariaTION OF BuLk MopuLUs WITH MOLECULAR
POLARIZABILITY FOR ALKALI HALIDES

i | |
Bulk | Indexof Cation | Anion Molecular | Ratio: Bulk
Modulus | Refraction | pejarization | Polarization | Polarization Modulus
Function /nz—1
Solid [
Bo | | Bo/(ii2—1)
= n?—] a o a=oqto_
kilobars kilobars
LiF 698 0.92 0.03 1.04 1.07 756
NaF 456 0.74 0.18 1.04 1.22 657
KF | 319 0.85 0.83 1.04 1.87 375
RbF 273 0.93 1.40 1.04 2.44 294
LiCl 315 1.75 0.03 3.66 3.69 180
NaCl 252 1.25 0.18 3.66 3.84 201
KCl 182 1.13 0.83 3.66 4.49 161
RbCl 162 1.19 1.40 3.66 5.06 136
LiBr 257 2.16 0.03 4.77 4.80 119
NaBr 211 1.62 0.18 4.77 4.95 130
KBr 155 1.33 0.83 4.77 5.60 117
RbBr 138 1.33 1.40 | 4.77 6.17 104
CsBr 156 1.78 2.42 [ 4.77 7.19 | 88
Lil 188 2.80 0.03 7.10 7.13 67
Nal 161 1.91 0.18 7.10 7.28 | 84
KI 124 1.69 0.83 7.10 7.93 73
Rbl 112 1.63 1.40 7.10 8.50 69
Csl 125 2.03 2.42 7.10 9.52 62

ionic polarizabilities and the index of refraction are taken from Waxler
and Weir (1965). The pertinent data are listed in Table III. Eq. (13)
shows that molecular weight and density do not affect the ratio of
modulus to Aa2—1. The dimensions of velocity, since it includes density
as well as modulus, must therefore lead to a different dependence from
that seen in Eq. (13). Manipulation of Eq. (10) and (11) leads to
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By analogy, the ratio of the longitudinal modulus to fiz—1 should be
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vB/p

AZ— 1

v

7_};1 = constant

nz —

= constant —;

M/p .
plazta )

T
P(Ol++0t_)

(14

(13)

Comparing Eq. (15) with Eq. (7), we see that, at constant mean atomic
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Fic. 4. The ratio vp/(n?—1), where v, is the longitudinal sound velocity, versus

VM /p/plat~+ay) for alkali halides. The solid line is Eq. (15).

weight, for alkali halides v, is determined by density and molecular
polarization as well as index of refraction, while for oxides v, is deter-
mined only by index of refraction.

A plot of the data for alkali halides is given in Fig. 4 which confirms the
validity of Eq. (15). The pertinent data are listed in Table IV.

Discussion

The primary reason that Eq. (1) and (2) work for oxides is that for a
great number of oxide compounds the mean atomic weight changes very
little from compound to compound, even though the density may change
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considerably. This constancy of M/p, demonstrated in Table I, is not
characteristic of other classes of solids. In particular, the atomic weight
of the alkali metals, alkali halides, and the covalent elements and com-
pounds changes greatly from solid to solid in a group. Consequently one
cannot replace the modulus-volume relationship, such as Eq. (3), with a
simple velocity-density relationship.

TABLE IV. VARIATION OF SOUND VELOCITY WITH PARAMETER
\/M/p/pa FOR ALKALL HALIDES

Mean Molecular | Index of Ratib;

Atomic Lon.g Shea:r Density | Polariza- | Refraction ,Lonl’f -

. Weight | Velocity Velocity tion Function +/M/p Velocity
Solid | /n2—1

Vp Vs | p por vp/(n2—1)
M/p —|- —— e =t ni—1 — —

lem fsec gm/cc lemfsec
LiF 12.97 7.14 l 4.29 2.64 1.07 .92 1.27 7.76
NaF 21.00 5.67 3.33 2.81 1.21 0.74 1.35 7.64
KF 29.05 4.64 2.58 22453, 1.87 .85 1.14 5.46
RbF 52325 3.95 2.10 2.88 2.4 0.93 1.03 4.25
LiCl 21.20 5.25 3.06 2.08 3.69 1.75 0.60 | 3.01
NaCl 29.22 4.55 2.59 2.16 .84 1.25 0.65 3.64
KCl 37.28 3.94 2.11 1.99 4.49 1.13 0.68 3.45
RbCl 60.47 3.08 1.61 2.80 506 1.19 0.54 2.59
LiBr 43.43 3.62 2m 3.47 4.80 2.16 0.40 1.68
NaBr 51.45 3.28 1.81 3.20 4.95 1.62 0.45 2.03
KBr 59.50 2.88 151 2.75 5.60 1.33 0.50 2.17
RbBr 82.70 2.58 ‘ 1.30 3p35 6.17 | 1.33 0.44 1.94
CsBr 106.20 | 2.70 1.55 4.43 7.19 | 1.78 0.32 1352
Lil 66.93 2.85 ‘ 1.51 4.06 7.13 | 2.80 0.28 1,43
Nal 74.68 2.73 1.50 3.67 7.28 1.91 0.32 1.51
KI 83.01 2.54 1.31 3.13 7.93 1.69 0.36 1.35
Rbl 106.40 2,20 1.1 3.55 8.50 1.63 0.34 1.52
CsI 129.91 2.2 1.30 4.51 | 9.52 2.03 0.27 | 1.10

The second reason that Eq. (1) and (2) apply to oxides is that the bulk
modulus and shear modulus are strongly dependent upon the volume,
but not on the valence. Alkali metals, alkali halides, fluorides, and
divalent compounds depend on the value of V, only to the inverse first
power. Consequently, even if the mean atomic weight were constant, the
velocity would not increase with density. It would be virtually indepen-
dent of density. A further complication is that in most nonoxides the
sound velocity depends upon the valence.

Another important difference between the oxides and the other classes
of solids mentioned is the fact that Drude’s law, Eq. (7), is uniformly
applied to oxide compounds. That is, for oxide compounds with constant
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M/p, the constant K in Eq. (7) does not vary significantly from com-
pound to compound. But for alkali halides, as shown by Eq. (11), the
index of refraction changes from compound to compound because the
polarizability changes (Table III).

The behavior of the oxide compounds from compound to compound is
very much like the behavior of a classical solid under pressure. That is to
say, if an alkali metal or an alkali halide is compressed, a new velocity
and a new refractive index will be associated with the new density; and
the subsequent relationship between sound velocity and refractive index
produced by compression will be similar to that special relationship for
oxides, Eq. (1) and (2), which is produced by compositional variation.
This will now be demonstrated in the following equations.

The variation of bulk modulus with pressure is independent of pressure
and is near the number 4 for a great many solids. Taking

dB

i =p=4 (16)

and recalling that
dp
=

we have

dB dv

B 8 v a7
The above integrates into

B VAN

5~ (%) s

However, since the value of dB/dP is always near 4 (that is, it has nearly
the same value as x in Eq. (3)), the variation of B with V due to pressure
using Eq. (18) is nearly the same as the variation of By with V, due to
compositional changes expressed by Eq. (3). The sound velocity defined
from the bulk modulus alone is

B By /p\ B2

=i/ o2 @9
where 8 is the constant dB/dP. Eq. (19) is the same form shown by Eq.
(5) and (6). Tf dB/dP is 3, the value of the exponent of p in Eq. (19) is
unity. Probably the exponent of p is slightly larger than unity for most
solids. By analogy, similar relations to Eq. (19) hold for the shear and

longitudinal sound velocities.
The density-refractive index relationship for many solids under pres-
sure obeys either the Lorentz-Lorenz law or Drude’s law (Waxler and
Weir, 1965). (Exceptions include Diamond and perhaps MgO.) The sub-



ISOTROPIC SOUND VELOCITILES 1013

ject has been reviewed by Hamann (1957). Consequently solids under
pressure obey some functional relationship equivalent to Eq. (7), al-
though Eq. (7) has been presented to represent data for different oxides
at ambient conditions. Thus the formalism which leads from Eq. (3) to
Eq. (8) and (9) holds for most solids under pressure.

The distinction of oxide compounds is that not only do they obey Eq.
(8) and (9) as individual solids under pressure, but that as a class the
sound velocity and refractive index vary from compound to compound at
ambient conditions according to Eq. (8) and (9).

It seems clear that as far as the isotropic values of the optical constants
and the velocity constants are concerned, oxide compounds with constant
M/p near 20 or 21 can be treated as one solid: with numerous poly-
morphic states. This is an important simplification since there are a large
number of such oxide compounds, as demonstrated by Table II. Fur-
thermore, these solids include many which are important to current
research in geophysics, electronic materials, and ceramics.

Finally, we comment on those few oxides which fail to conform to Eq.
(3) and (6). Such oxides will be those which either do not obey Eq. (3) or
Eq. (7). One example is TiO;, which has an abnormally high value of
the refractive index for its density and molecular weight. This is prob-
ably due to the same cause which leads to a high dielectric constant. Von
Hippel (1954) ascribes the high dielectric constant to the TiOg constella-
tion which has binding in transition between polar and nonpolar types.
Another example is ZrQ,.
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