THE AMERICAN MINERALOGIST

JOURNAL OF THE MINERALOGICAL SOCIETY OF AMERICA

Vol. 51

SEPTEMBER-OCTOBER, 1966

Nos. 9 and 10

THE ALKALI FELDSPAR SOLVUS IN THE SYSTEM Na₂O-K₂O-Al₂O₃-SiO₂-H₂O¹

W. C. LUTH² AND O. F. TUTTLE,³ Department of Geochemistry and Mineralogy, The Pennsylvania State University, University Park, Pennsylvania.

Abstract

Preliminary experiments in the system Na₂O-K₂O-Al₂O₃-SiO₂-H₂O indicate that the nature of the alkali feldspar solvus is influenced by the Na₂O+K₂O:Al₂O₃ molar ratio in the bulk composition. The solvuses obtained by the crystallization of dehydrated gels in the presence of an aqueous vapor phase at two kilobars show significant differences which are dependent on the stoichiometry of the initial bulk composition. This feature may be a consequence of differences in thermal state in the various synthetic feldspars, or it may reflect a departure from stoichiometry. Analysis of unit cell dimensions suggest that the alkali feldspars crystallized in the presence of excess Al₂O₃ contain minor amounts of excess Al₂O₃ in crystalline solution. Unit cell dimensions of those alkali feldspars crystallized in the presence of excess Na₂O+K₂O suggest that in this case a lower thermal state is obtained.

INTRODUCTION

A fundamental assumption underlying much of the recent experimental research on the synthesis, stability, and petrogenic significance of the alkali feldspars is that the 1:1:6 molar ratio of $Na_2O + K_2O:Al_2O_3:SiO_2$ is maintained. Do the analyses justify this assumption? Can all the departures from the 1:1:6 ratio be attributed to analytical uncertainty and contamination?

Calculation of the CIPW norms for alkali feldspar analyses will give directly the departure from the 1:1:6 ratio; if there is excess Al_2O_3 , corundum will appear in the norm; excess alkalis will result in acmite or alkali metasilicates in the norm; excess silica will give quartz in the norm; and with deficiency of silica nepheline will appear in the norm. If there is CaO in the feldspar, and there is not enough Al_2O_3 to form anorthite from all the CaO, the norm will show this Al_2O_3 deficiency by the appearance

¹ Contribution No. 65-5, College of Mineral Industries.

² Present Address: Department of Geology and Geophysics, Massachusetts Institute of Technology, Cambridge, Mass.

⁸ Present Address: Department of Geology, Stanford University, Stanford, California.

of diopside or wollastonite. Consequently, the feldspar analyses can be grouped into four categories:

(1) excess SiO₂ and excess Al₂O₃ (+Q, +C), (2) excess SiO₂ and deficiency of Al₂O₃ (+Q, -C), (3) deficiency of SiO₂ and an excess of Al₂O₃ (-Q, +C), (4) deficiency of both SiO₂ and Al₂O₃ (-Q, -C).

Deer *et al.* (1963, pp. 36-45, 110) present analytical data on 87 alkali feldspars from a wide variety of geologic environments. In terms of the four categories given above, we can construct orthogonal axes labeled $\pm Q$ and $\pm C$, and a point for each analysis can be plotted on the diagram. This has been done in Fig. 1 for 73 of the analyses given in Deer *et al.* (1963). It can readily be seen that there is a tendency for analyses to group around the stoichiometric values, but relatively large departures from the accepted stoichiometry are common. It is probable that many of these departures can be accounted for in terms of analytical difficulties, sample impurities, or a combination of both factors. However, we are inquiring as to whether or not the available analytical data indicate that stoichiometry is observed. On the basis of the data presented, it can be said that there is a tendency toward stoichiometry, but there is no evidence for exact obedience of the requirements of the stoichiometric formula.

The data obtained by Smith and Ribbe (1966) from microprobe x-rayemission analysis indicates less scatter and closer agreement with the stoichiometric formula than the data obtained by classical gravimetric methods. It is possible that the reduction of scatter is due in large part to the small sample analyzed with the consequent minimization of the effects of inpurities such as quartz and mica. A second reason for the closer approximation to the stoichiometric values lies in the fact that stoichiometry was in part assumed in the preparation of the calibration curves for Al and Si. Smith and Ribbe (1966) point out that systematic errors can arise if stoichiometry is not obeyed.

In a later section of this paper we will be concerned with the mol ratio (Na+K)/Al. The analogue of this ratio in the natural feldspars is the mol ratio $(Na+K+Ca+Ba+Sr)/(Al+Fe^{3+})$. In Fig. 2 this parameter is plotted against the mol per cent "An" (An+Cn+Sr-F)/(Ab+Or+An+Cn+Sr-F) in the feldspar. The data is taken from Smith and Ribbe (1966). It is apparent, disregarding analytical precision, that 0.5 weight per cent excess Al_2O_3 in crystalline solution with the feldspars is permitted by the data. Considering only those alkali feldspars with less than 2 mol per cent "An" present, it seems possible to have alkali feldspars with either an excess or a deficiency of Al_2O_3 in amounts up to about 0.5 weight per cent. Using these two parameters, which are ratios, this value is at the margin of the precision reported by Smith and Ribbe. At the present time then, analytical techniques and problems of contamination

FIG. 1. Normative quartz and corundum in 73 alkali feldspar analyses (dots) from Deer *et al.* (1963, pp. 36–44, 110) and Chayes and Zies (+) (1962, p. 114). The term (-C) represents that amount of Al_2O_3 required to form albite from acmite and sodium metasilicate and to make anorthite from diopside and wollastonite. -Q is that amount of quartz required to form albite from nepheline.

do not either support or deny the possibility of non-stoichiometry at the ± 0.5 weight per cent Al₂O₃ level, and probably not the ± 1.0 weight per cent Al₂O₃ level if the assumptions made by Smith and Ribbe are considered.

The stoichiometry of the feldspars has recently been questioned by Chayes and Zies (1962) who wrote, "it seems to us that the possibility of systematic departure from the assumed 1:1:6 ratio in alkali feldspars deserves more than casual consideration." They point out that in one

FIG. 2. The alkali/alumina mol ratio in alkali feldspars. Analytical data from Smith and Ribbe (1966). The mol ratio $K+Na+Ca+Ba+Sr:Al+Fe^{3+}$ is the ordinate and the mole per cent "An" (An+Cn+Sr-F:An+Cn+Sr-F+Ab+Or) is the abcissa. The line originating at 0, 1.0 terminates at 100, 0.5 and indicates exact stoichiometry, in terms of the mol ratio, for CaAl₂Si₂O₈, BaAl₂Si₂O₈, SrAl₂Si₃O₈, NaAlSi₃O₈, KAlSi₃O₈ and (Na, K) FeSi₃O₈ crystalline solutions. The line originating at 0, 0.95 indicates a hypothetical crystalline solution with 1 weight per cent Al₂O₃ in the above components.

specimen from a comendite (rhyolite) no quartz was found in the feldspar concentrate despite a careful search, yet the analysis showed 2.53 per cent excess silica.

EXPERIMENTAL STUDIES

Tuttle and Bowen (1958) have demonstrated that the nature of the alkali feldspar solvus is very sensitive to the thermal state of the feldspar. It was believed that the feldspar solvus might also be sensitive to slight variations in stoichiometry, and to check this possibility five gels were prepared having a constant ratio of Na₂O to K₂O, but with 3 weight per cent excess SiO₂, Al₂O₃, NaAlSiO₄+KAlSiO₄ and NaSiO₅+K₂Si₂O₅, in addition to the one on the NaAlSi₃O₈-KAlSi₃O₈ join. A second series of gels was prepared near the albite composition for unit cell determinations.

The composition of each of these eleven starting materials is given in Table 1. The gels were prepared in the manner described by Luth and Ingamells (1965).

These experiments were carried out in externally heated, cold-seal pressure vessels (Tuttle, 1949; Luth and Tuttle, 1964). The gel starting materials were placed in 2.0 mm O.D., 0.1 mm wall thickness gold capsules, together with 15 weight per cent distilled, deionized water. The capsules were run in groups of 5 or 6 in a pressure vessel so that the temperature, pressure and quenching treatment of the samples would be

001	$Ab_{60}Or_{40}$				
002	$(Ab_{60}Or_{40})_{97}$ $(Al_2O_3)_3$				
003	$Ab_{60}Or_{40})_{97}$ (Ne ₆₀ KS ₄₀) ₃				
004	$(Ab_{60}Or_{40})_{97}$ (NS ₆₀ KS ₄₀) ₃				
005	$(Ab_{60}Or_{40})_{97}$ (SiO ₂) ₃				
007	Abs50r15				
008	$(Ab_{85}Or_{15})_{97}$ $(Al_2O_3)_3$				
009	$(Ab_{85}Or_{15})_{97}$ $(NS_{85}KS_{15})_3$				
010	$Ab_{90}Or_{10}$				
011	$(Ab_{90}Or_{10})_{97}$ $(Al_{2}O_{3})_{3}$				
012	$(Ab_{90}Or_{10})_{97} (NS_{90}KS_{10})_3$				
	Ab $Na_2O \cdot Al_2O_3 \cdot 6SiO_2$				
	$Or K_2O \cdot Al_2O_3 \cdot 6SiO_2$				
	Ne Na ₂ O · Al ₂ O ₃ · 2SiO ₂				
	Ks $K_2O \cdot Al_2O_3 \cdot 2SiO_2$				
	NS $Na_2O \cdot 2SiO_2$				
	KS $K_2O \cdot 2SiO_2$				

TABLE 1. BULK COMPOSITIONS STUDIED

identical. The precision in temperature and pressure for a 30 day run is $\pm 7^{\circ}$ C. and ± 0.08 kb respectively. The composition of the alkali feldspars is based on the position of the 201 reflection (Tuttle and Bowen, 1958). In connection with a related problem (Seck, Luth and Tuttle in preparation) gels were prepared on the NaAlSi₃O₈-KAlSi₃O₈ join at two or five per cent intervals, and crystallized at low pressure and high temperature to homogeneous alkali feldspars. The absolute value of d_{201} for these feldspars have been determined using a spinel standard supplied by Professor G. V. Gibbs. The spinel has the 111 reflection at 19.016° 2 θ (CuK_a radiation), making it very well suited for use as an internal standard both for the composition determinations, and for determination of unit cell dimensions. A working curve was prepared using the data obtained and will be presented in a later paper.

The cell constants a, b, c, α , β , γ and the unit cell volume were obtained

Run No.	2θ Obs,	2θ Calc.	No. of* lines	a(Å)	$b(\text{\AA})$	$c(\text{\AA})$	Unit cell Volume	α (°)	β (°)	γ (°)	Bulk Compo- sition	% Or (weight)
1192	21.561	21.544	14	8.354	12,999	7.167	699.20	90,00	116.05	90,00	2	39
1232	21.510	21.521	14	,009** 8,363	• 005 12.984	.004 7.164	698,66	90,00	.06	90,00	1	42
1233	21.550	21.552	14	.005 8.350	.003	.003	697,70	90,00	116.08	90.,00	2	40
1235	21.520	21,542	14	.004 8.354	12.978	7.154	696.43	90.00	116.12	90.00	4	42
1407	21.856	21.865	12	8.214	12,913	7.148	677.94	92.55	116.44	90,22	7	16
1408	21.903	21.913	8	8.198	12,915	7.137	676:01	92.86	116.33	90.29 .10	8	13
1409	21,912	21,907	10	8.198	12.892	7.134	674,04	92.41	116.47	90.37	9	13
1410	21,972	21,985	19	8,172	12,877	7.127	671.32	93.26 11	116.24	89.99 .10	10	5
1411	21.994	21.974	17	8.174	12,900	7.134	672.65	93.38 .10	116.33 .05	90.17 .08	11	3
1412	21.985	21.967	13	8.176	12.849	7.125	688.99	93,32 .05	116.42 .05	89.83 .04	12	4
1273	21,313	21.317	11	8,449 .005	13.000 003	7.177	707.94	90.00	116.10 .04	90.00	1	60
1274	21.372	21.381	12	8.421 .06	13.010	7.179 .004	706.27	90.00	116,11 .06	90.00	2	55
1276	21,293	21.283	17	8.462	13.006 .003	7.175	708.71	90.00	116.18 _03	90.00	4	62
1279	21,238	21.239	21	8.484 .003	13.015 .003	7.175	711.36	90,00	116.11 ,02	90,00	1	68
1280	21.243	21.238	16	8.479 .004	13.019 .004	7,180 ,003	711.11	90.00	116_20 _04	90.00	2	67
1282	21.206	21.204	19	8.498 .003	13.008 .003	7.186 .003	713,42	90.00	116.08 .04	90.00	4	71
1248	21.208	21.220	13	8_494 _006	13.019 .004	7.172 .004	712.53	90.00	116.05 .05	90,00	1	71
1249	21.246	21.260	10	8.481 _007	13.012 _012	7.167	711.48	90.00	115.90	90,00	2	01
1251	21.168	21.171	12	8.513 .003	13.007 .002	7.173	712.86	90.00	.03	90,00	4	63
1226	21.298	21.293	11	8_460 .005	13.007	7.174	708.71	90.00	.04	90.00	2	58
1227	21.340	21.356	10	8.430 .006	13.018	,005	707.33	90.00	.06	90.00	2	65
1229	21,264	21,265	16	8.472 .003	.002	.002	705 60	90.00	.03	90.00	1	56
1255	21.358	21-359	12	8_430 _003	13.000	.002	703 64	90.00	.03	90,00	2	51
1256	21,416	21.430	10	8.399 .010 8.420	.009	008 7 173	705.04	90.00	116.14	90.00	4	57
1238	21, 540	21,043	14	.005	_003	_003	100-10	20100	.04			

TABLE 2. UNIT CELL DIMENSIONS OF ALKALI FELDSPARS

* Number of lines used in refinement. ** Standard error.

for twenty-five of the alkali feldspars synthesized in connection with this study. A FORTRAN II program for the IBM 7074 at the Pennsylvania State University Computation Center was prepared by Professor G. V. Gibbs and Dr. C. M. Smith, Jr. based on an ALGOL program developed by Evans *et al.* (1962), of the U.S. Geological Survey for least squares refinement of cell constants from powder diffraction data. We would like to acknowledge the contribution made by Gibbs and Smith in preparing this program, and thank Dr. D. E. Appleman for supplying the ALGOL version.

FIG. 3. Alkali feldspar solvus determined on material crystallized from a dehydrated gel of the composition $Ab_{60}Or_{40}$ at various temperatures at 2 Kb pressure. The maximum error in determining the position of the 20I is ± 2 weight per cent Or and the temperature uncertainty is $\pm 10^{\circ}$ C.

The Norelco High Angle Spectrometer with nickel filtered copper (40kv, 15ma) radiation was used for both the $20\overline{1}$ and cell constant determinations. In the determination of $20\overline{1}$ four oscillations over the range of $18-22.5^{\circ}$ 2 θ were completed at a scanning speed of $\frac{1}{4}^{\circ}$ 2 θ per minute (chart speed of one inch per minute), and the resultant value of 2θ ($20\overline{1}_{feldspar}-111_{epinel}$) added to the 19.016° 2 θ value for the spinel. For the determination of cell constants the following is pertinent: four oscillations; $\frac{1}{4}^{\circ}$ 2 θ /minute scanning speed; 1°/minute chart speed; 12-55° 2 θ range; 1° scatter and divergence slits; 0.003 inch or 0.006 inch receiving slit; geiger sensing element; time constant 4 or 2 seconds; scale factor 0.8 or 1.0; multiplier 4 or 8. The data obtained by the least squares refinement of the powder diffraction data are presented in Table 2.

FIG. 4. Alkali feldspar solvus determined on material crystallized from a dehydrated gel of the composition $[Ab_{60}Or_{40}]_{97}[Al_2O_3]_3$ at various temperatures at 2 Kb pressure.

RESULTS

The runs reported on here are all crystallization runs in which gels are crystallized at constant pressure and temperature. Several attempts were made to approach the solvus from two directions, but the unmixing process is so slow that after 30 days equilibrium was not obtained.

FIG. 5. Alkali feldspar solvus determined on material crystallized from a dehydrated gel of the composition $[Ab_{60}Or_{40}]_{97}[(Na_2O \cdot 2SiO_2)_{60} (K_2O \cdot 2SiO_2)_{40}]_3$ at various temperatures at 2 Kb pressure.

ALKALI FELDSPAR SOLVUS

The results of the synthesis experiments are presented in graphic form in Figs. 3, 4, 5 and 6. The data have been compiled in tabular form and are available from either of the authors. In Figs. 3, 4, 5 and 6 best fit curves have been estimated for the position of the solvus, as determined in the synthesis runs. This is meant to indicate the best fit obtained when possible errors in temperature and composition are considered. In all probability the "true" solvus lies somewhat outside the indicated curve for each of the figures, since it would be expected that the synthesized feldspar lies somewhere between the binodal and spinodal.

There is a significant and reproducible difference between the solvus

FIG. 6. Composite diagram showing the three solvuses of Figs. 2, 3 and 4 together with the solvus determined by Orville (1963).

determined in this way from gels containing excess alkalis and excess alumina and those on the join. The stoichiometric composition gives a solvus that approaches the solvus determined at 1 kb by Tuttle and Bowen (1950). The solvus determined by crystallization of the gels containing excess alkalis is similar to that determined by Orville (1963) where excess alkali was also present, as NaCl+KCl. The solvus determined in the presence of excess Al_2O_3 is different from either of the other two. These differences may be explained by differences in thermal state of the synthesized alkali feldspars, or by small departures from stoichiometry. Reversal experiments in which the postulated solvus was approached from both lower and higher temperatures might indicate which, if either, of these two cases is more plausible. The results of one such set of experiments are given in Table 3. If equilibrium had been obtained in

1367

all three cases, the end products obtained in all three experiments would be the same. The three cases considered are:

1. direct synthesis from the gel; 2. production of the two coexisting alkali feldspars from an initially homogeneous single phase; and 3. production of the two coexisting alkali feldspars from an initial assemblage in which the Ab rich solid solution contains more Ab than the equilibrium value and the Or rich solid solution contains more Or than the equilibrium value.

The data given in Table 3 indicate that the equilibrium was not obtained in this set of reversal experiments. However, the data do show that, for each of the three bulk compositions considered here, the synthesis points

Set 1. Direct Synthesi	s: 625°, 696 hours			
Composition 1	(On Ab-Or join)	Or ₂₄ , Or ₅₅		
Composition 2	(with excess Al ₂ O ₃)	Or ₂₄ , Or ₄₆		
Composition 4	(with excess $(K,Na)_2O \cdot 2SiO_2$)	Or ₁₄ , Or ₅₅		
Set 2. Synthesis: 700°	C, 240 hours, temperature reduced to	625° C, 624 hours		
	700°	625°		
Composition 1	Or_{42}	Or ₃₀ , Or ₄₈		
Composition 2	Or_{40}	Or_{27}, Or_{42}		
Composition 4	Or ₄₂	Or_{21}, Or_{59}		
Set 3. Synthesis: 550° (C., 240 hours, temperature increased to	625°, 624 hours		
	550°	625°		
Composition 1	Or ₁₀ , Or ₇₁	Or14, Or59		
Composition 2	Or ₁₀ , Or ₆₇	Or13, Or54		
Composition 4	Or ₇ , Or ₇₆	Or ₇ , Or ₅₈		

TABLE 3. REVERSAL EXPERIMENTS AT 2 KB

are intermediate to the reversal points. An unexplained exception is the Or-rich solid solution crystallized in the presence of excess alkali. It is probably more significant that the overall pattern is the same in the reversal experiments as in the direct synthesis. Thus the albite rich solid solutions crystallized in the presence of excess alkali are consistently more Ab rich than those crystallized from either a bulk composition of the Ab-Or join, or crystallized in the presence of excess alumina. Further, the Or rich solid solutions crystallized in the presence of excess alumina are consistently richer in Ab than those crystallized from bulk compositions either on the Ab-Or join, or rich in alkali. Those results do not indicate whether the differences in the solvuses as determined by direct synthesis are a consequence of different thermal states, or of non-stoichiometry in the feldspars. However, the data are not consistent with a postulated role of excess alumina as a "reaction inhibitor." That is, a closer approxima-

1368

tion to equilibrium would be obtained in the presence of excess alkali than from stoichiometric compositions, which in turn would be closer to an equilibrium value than compositions which contain excess alumina.

It was believed analysis of the unit cell dimensions might provide some indication as to whether the differences in the solvuses is due to nonstoichiometry of the feldspars, or difference in thermal state. Figure 7 is

FIG. 7. a and b cell dimensions of alkali feldspars synthesized in this study. The solid line represents the a and b cell dimensions of the sanidine-high albite series as determined by Orville (1966). The dashed line indicates the a and b cell dimensions for a microcline-low albite exchange series, also from Orville (1966). Filled circles indicate cell dimensions of feldspars crystallized from a bulk composition on the Ab—Or join. Plus symbols indicate cell dimensions of feldspars crystallized in the presence of excess Al₂O₈. Triangles give the cell dimensions of feldspars crystallized in the presence of excess akali. Standard error of a and b is given in Table 2.

a plot of the a and b cell dimensions obtained from least squares refinement of the x-ray powder diffraction data for feldspars synthesized in connection with this study. Professor P. M. Orville (in press) has kindly provided us with the results of least square analysis of cell dimensions from the sanidine-high albite series, and from the microcline-low albite series (exchanges in alkali halide melts). The curves for the two series are also presented in Fig. 7. It can readily be seen that the data obtained for alkali feldspars crystallized from stoichiometric bulk compositions are entirely consistent with Orville's data for the sanidine-high albite series.

Rui No	n Composi- tion	Temp. (°C)	Pressure (Kb)	Time (hours)	2θ (CuKα)		Or Content
124	8 001	550	2	288	21.208	21.909	Or10 Or71
119	6 001	575	2	240	21.255	21.870	OTIA OTEA
133	9 001	577	2	686	21.246	21.873	Or14 Ore7
122	6 001	600	2	265	21.298	21.872	Oria Oraz
120	8 001	625	2	288	21.298	21.836	OT18 OT62
133	3 001	627	2	696	21.366	21.758	Or24 Or45
125	5 001	635	2	288	21.358	21.781	OT22 OT56
132	7 001	642	2	624	21.446	21.756	Or24 Or48
1191	1 001	650	2	532	21.475	21.675	Orat + 4 Oras + 4y nour
1202	2 001	650	2	265	21,480	21.707	Oras Oras
1316	5 001	658	2	672	21.456	21.676	Ora Oraz
1261	1 001	665	2	289	21.470	21.595	Oras Oras
1309	001	680	2	672	21.528		Ora
1232	2 001	700	2	240	21.515		Oraz
1273	3 001	650	5	216	21.313	21.855	Oris Orso
1279	001	650	10	168	21.238	21,965	Ors Otes
1407	7 007	645	2	288	21.856		Or16
1410	010	645	2	288	21.972		Ors
1249	002	550	2	288	21.246	21.924	Or10 Or67
1197	002	575	2	240	21.317	21.895	Or12 Or60
1340	002	577	2	686	21.294	21.884	Or13 Or62
1227	002	600	2	265	21.340	21.850	Oris Ores
1209	002	625	2	288	21,425	21.795	Or21 Or60
1334	002	627	2	696	21.448	21.756	Or24 Or46
1256	002	635	2	288	21-416	21.801	Or20 Or51
1328	002	642	2	624	21.506	21-671	Or81 Or44
1192	002	650	2	532	21.561		Or ₃₉
1203	002	650	2	265	21.560		Or39
1315	002	658	2	672	21.526		Or ₄₁
1262	002	665	2	289	21.545		Or40
1310	002	680	2	672	21.541		Or ₄₀
1233	002	700	2	240	21.549		Or40
1274	002	650	5	216	21.372	21.875	Or14 Or55
1280	002	650	10	168	21.238	21.955	Or7 Or67
1408	008	645	2	288	21,902		Or13
1411	011	645	2	288	21.933		Or ₃
1251	004	550	2	288	21.168	21.949	Or7 Or76
1199	004	575	2	240	21.270	21.947	Ors Or64
1342	004	577	2	686	21,241	21.978	Ors Or67
1229	004	600	2	265	21 + 264	21,946	Or8 Or66
1212	004	625	2	288	21.395	21.825	Or19 Or54
1336	004	627	2	696	21.376	21.865	Or14 Or55
1258	004	635	2	288	21.346	21.895	Or13 Or57
1330	004	642	2	624	21.428	21.816	Or19 Or50
1205	004	650	2	265	21.445	21.790	Or ₂₁ Or ₄₈
1318	004	658	2	672	21.476	21.726	Or ₂₇ Or ₄₆
1204	004	665	2	289	21.445	21.725	Or ₂₇ Or ₄₈
1312	004	680	2	672	21.538		Or ₄₁
1235	004	700	2	240	21.517		Or ₄₂
1276	004	650	5	216	21-293	21.920	Or10 Or62
1282	004	650	10	168	21.206	21.985	Or4 Or71
1409	009	645	2	288	21.906		Or13
1412	012	645	2	288	21.984		Or ₄

Table 4. Results of Experiments in the System $\rm Na_2O\text{-}K_2O\text{-}Al_2O_3\text{-}SiO_2\text{-}H_2O$

On the other hand, those feldspars crystallized in the presence of excess alkali appear to lie between the curves for the two series. This suggests that those feldspars are of intermediate thermal state. This suggestion is consistent with the nature of the solvus as determined in the presence of excess alkali. Tuttle and Bowen (1958) show that the alkali feldspar solvus for the orthoclase-low albite series falls outside the solvus for the sanidine-high albite series. Consequently it is suggested that the differences in the solvus as determined in the presence of excess alkali and from stoichiometric bulk compositions is a reflection of differences in thermal

FIG. 8. Alkali feldspar solvuses as a function of pressure at 650° C., for the composition (dashed curve) on the Ab-Or join, in the presence of excess alkali (dash-dot curve), and in the presence of excess Al₂O₃ (dash double dot curve).

state of the alkali feldspars. However, the cell dimension for the alkali feldspars crystallized in the presence of excess alumina fall consistently above the curve for the high albite-sanidine series. That is, they lie beyond the region enclosed by the curves for the high albite-sanidine series, and the microcline exchange series. For a given a cell dimension, the b cell dimension is consistently larger for alkali feldspars crystallized in the presence of excess alumina than would be indicated by the high albite-sanidine series. Although the figure is not included, the unit cell volumes for alkali feldspars crystallized in the presence of excess alumina are consistently larger than would be indicated by the high albite-sanidine series. Consideration of the nature of the solvus, as determined by direct synthesis from gels in the presence of an aqueous vapor phase, and the unit

cell dimensions strongly suggests that alkali feldspars can be synthesized (either stably or metastably) which contain excess alumina over the stoichiometric value. Excess Al in the alkali feldspar structure may be accounted for if an oxonium feldspar ($H_3OAlSi_3O_8$) end member in the crystalline solution series is postulated (as suggested by Professor J. B. Thompson, pers. comm., 1965). Smith and Ribbe (1966, pp. 201, 214) also suggest that the alkali structural site may be partially occupied by (H_3O)⁺ ions. Since the alkali feldspars crystallized in the presence of excess alumina always show either an alumino-silicate (typically mullite), corundum, or mica present in the products of the run, any solid solution postulated must be less than 3 weight per cent alumina. We would tentatively estimate 1 per cent as the maximum value at this pressure over the temperature range considered.

EFFECT OF PRESSURE ON THE SOLVUS

A number of runs was made to determine the effect of pressure on the solvus. The results are shown as a polybaric, isothermal diagram (650° C.) in Fig. 8. It is obvious that there is a drastic pressure effect on all three solvuses.

CONCLUSIONS

These preliminary studies on the alkali feldspar studies in the system Na₂O-K₂O-Al₂O₃-SiO₂-H₂O indicate that the nature of the solvus is influenced by the molar ratio of Na₂O+K₂O:Al₂O₃ in the bulk composition from which the feldspar is crystallized. Different solvuses are obtained depending on whether the molar ratio is less than, equal to, or greater than unity. The results of this study are not of sufficient detail to conclude that non-stoichiometry in the alkali feldspars has been demonstrated. However, the nature of the solvuses obtained by direct crystallization, and the analysis of unit cell dimensions, suggest that when the alkali: alumina molar ratio is less than unity, excess alumina may enter in crystalline solution in the alkali feldspars. The same lines of evidence suggest that when the alkali: alumina molar ratio in the bulk composition is greater than one, alkali feldspars of lower thermal state than the sanidine-high albite series are produced. It is possible that when this molar ratio is greater than one, non-stoichiometric alkali feldspars may be produced; however, the bulk of the evidence seems to point toward a lower thermal state.

ACKNOWLEDGEMENTS

We would like to acknowledge financial support provided by the National Science Foundation. F. M. Gross and R. Z. Small provided very capable assistance in the maintenance of the high pressure facilities. We would also like to thank Professor P. M. Orville, Yale University, Dr. D. B. Stewart, U.S. Geological Survey, and D. R. Waldbaum, Harvard University, for making available their data on alkali feldspars prior to publication.

References

- CHAYES, F. AND E. G. ZIES (1962) Ann. Rept. Director Geophys. Lab. Carnegie Inst Washington Yearbook 61.
- DEER, W. A., R. A. HOWIE AND J. ZUSSMAN (1963) Rock Forming Silicates, v. 4. John Wiley & Sons, Inc., New York.
- EVANS, H. T., JR., D. E. APPLEMAN AND D. S. HANDWERKER (1963) The least squares refinement of crystal unit cells with powder diffraction data by an automatic computer indexing methods (abs.). Program, Ann. Meet., Am. Cryst. Assoc., March 28, 1963, Cambridge, Mass., p. 42-43.
- LUTH, W. C. AND C. O. INGAMELLS (1965) Gel preparation of starting materials for hydrothermal experimentation. Am. Mineral., 50, 255–258.
- ----- AND O. F. TUTTLE (1964) Externally heated cold-seal pressure vessels for use to 10,000 bars and 750°C. Am. Mineral., 48, 1401–1403.
- ORVILLE, P. M. (1963) Alkali ion exchange between vapor and feldspar phases. Am. Jour. Sci., 261, 201–237.

----- (1966) Unit-cell parameters of the micro-cline-low albite and the sanidine-high albite solid solution series (in press).

- SECK, H., W. C. LUTH AND O. F. TUTTLE (1966) The system NaAlSi₂O₈-KAlSi₂O₈-H₂O (in preparation).
- SMITH, J. V. AND P. H. RIBBE (1966) X-ray emission microanalysis of rock-forming minerals III. Alkali feldspars. Jour. Geol. 74, 197–216.
- TUTTLE, O. F. (1949) Two pressure vessels for silicate-water studies. Geol. Soc. Am. Bull. 60, 1727–1729.
- ----- (1952) Optical studies on alkali feldspars. Am. Jour. Sci., Bowen Vol., 553-568.
- ----- AND N. L. BOWEN (1950) High temperature albite and contiguous feldspars. Jour. Geol. 58, 572–583.
- AND N. L. BOWEN (1958) Origin of granite in the light of experimental studies in the system NaAlSi₂O₄-KAlSi₃O₄-SiO₂-H₂O. Geol. Soc. Am. Mem. 74.

Manuscript received, September 20, 1965; accepted for publication, June 5, 1966.