# THE AMERICAN MINERALOGIST

JOURNAL OF THE MINERALOGICAL SOCIETY OF AMERICA

Vol. 51

NOVEMBER-DECEMBER, 1966

Nos. 11 and 12

# ZELLERITE AND METAZELLERITE, NEW URANYL CARBONATES<sup>1</sup>

R. G. COLEMAN, D. R. ROSS AND R. MEYROWITZ, U. S. Geological Survey, Menlo Park, Calif.; Washington, D. C.

#### ABSTRACT

The mineral zellerite, named after Howard D. Zeller, occurs at the Lucky Mc uranium mine, Fremont County, Wyoming, as pin-cushion clumps of needlelike orthorhombic crystals on oxidized uranium ore and is intimately associated with gypsum and secondary iron oxides. The recalculated analysis gives CaO 10.3, UO<sub>3</sub> 53.9, CO<sub>2</sub> 16.9, H<sub>2</sub>O<sup>+</sup> (110°) 12.3, H<sub>2</sub>O<sup>-</sup> (110°) 6.6 after SiO<sub>2</sub>+insoluble 0.5, R<sub>2</sub>O<sub>3</sub> 1.0, K<sub>2</sub>O 0.2, Na<sub>2</sub>O 0.4 were subtracted as impurities. This gives a ratio of CaO: UO<sub>3</sub>:CO<sub>2</sub>H<sub>2</sub>O of 1.00:1.03:2.09:5.81. This ratio and other considerations regarding the water content, yie<sup>1</sup>ds the formula CaUO<sub>2</sub>(CO<sub>3</sub>)<sub>2</sub> · 5H<sub>2</sub>O for the fully hydrated mineral. On partial dehydration, a probable metacalcium uranyl dicarbonate of formula CaUO<sub>2</sub>(CO<sub>3</sub>)<sub>2</sub>·3H<sub>2</sub>O, metazellerite, is produced.

Single-crystal x-ray studies of both hydrated and dehydrated material yield: (1) zellerite, orthorhombic, probable space group  $Pmn2_1$  or Pmnm, a 11.220, b 19.252, c 4.933 Å, cell contents 4[CaUO<sub>2</sub>(CO<sub>3</sub>)<sub>2</sub>·5H<sub>2</sub>O], cell volume 1065.4 Å<sup>3</sup>; (2) metazellerite, orthorhombic, space group  $Pbn2_1$  or Pbnm, a 9.718, b 18.226, c 4.965 Å, cell contents 4[CaUO<sub>2</sub>(CO<sub>3</sub>)<sub>2</sub> ·3H<sub>2</sub>O], cell volume 879.5 Å<sup>3</sup>.

The fully hydrated mineral is lemon yellow with a dull luster and no cleavage. Measured specific gravity is 3.25; calculated 3.24 gm/cm<sup>3</sup>. The optical properties are:  $\alpha$  1.536,  $\beta$  1.559,  $\gamma$  1.697, biaxial (+),  $2V=30-40^{\circ}$ , Z=c, dispersion weak v>r; pleochroism: Z= light yellow, Y= colorless, X= colorless. The mineral has a weak patchy green fluorescence under long and short ultraviolet light. It forms as an oxidation product of uraninite-coffinite in the weathering zone, where  $P_{CO_2}$  is greater than that in the atmosphere and pH is greater than 7.

# INTRODUCTION

Studies on the uranium minerals making up the ores from the Gas Hills deposit in Wyoming have revealed a complex suite of secondary minerals in the oxidized zone. In July 1955, Howard D. Zeller, U. S. Geological Survey, discovered an unknown yellow, fibrous uranium mineral in the oxidized zone of the Lucky Mc mine. Preliminary *x*-ray studies by Daphne R. Ross indicated that the mineral has a structure distinct and different from previously described secondary uranium minerals. Chemical analysis confirmed that it is a uranyl carbonate of distinct composi-

<sup>1</sup> Publication authorized by the Director, U. S. Geological Survey.

tion. The mineral, a calcium uranyl carbonate,  $CaUO_2(CO_3)_2 \cdot 5H_2O$ , is named zellerite after Zeller. Much of the preliminary geologic investigation on these uranium deposits carried out by him were instrumental in the later successful exploration and mining operations of this important uranium district (Zeller, 1957; Zeller *et al.*, 1956). The names zellerite and metazellerite have been approved by the New Mineral Names Committee, IMA.

## OCCURRENCE

Zellerite is found as incrustations on arkosic country rock; it forms during surface oxidation of the uranium ore. The unoxidized ore in the Lucky Mc mine is a fine-grained mixture of uraninite, coffinite, and iron sulfides filling intergranular areas in arkose. The coarse and porous nature of the host rock allows rapid moist-air oxidation of these primary uranium minerals and sulfides. In the early stages of oxidation, black primary ore commonly contains fine seams of green liebigite  $[Ca_2(UO_2)]$ (CO<sub>3</sub>)<sub>3</sub>·10H<sub>2</sub>O] intergrown with gypsum. Rimming this dark ore is a rusty brown zone where the oxidation has effected the breakdown of all the primary uranium minerals and some of the iron sulfides. Zellerite is most commonly present in this zone where it is associated with gypsum, limonite and partially altered iron sulfides. It forms extremely fine fibers that aggregate into pincushion clumps (Fig. 1). Schoepite [UO<sub>2</sub>(OH)<sub>2</sub> ·H2O], meta-autunite [Ca(UO2)2(PO4)2·2.5-6.5H2O], uranophane [Ca  $(UO_2)_2Si_2O_7 \cdot 6H_2O]$ , and uraniferous opal are present in the more intensely oxidized zones contiguous to the zellerite.

A second occurrence of zellerite in Wyoming from the Pat No. 8 mine, Powder River Basin, Wyo., was brought to the attention of the senior author by William Sharp (*in* Sharp and Gibbons, 1964), U. S. Geological Survey, and a third occurrence in New Mexico has been confirmed by Granger (1963). These occurrences are similar to that at the Lucky Mc mine in that the zellerite forms as small veins and clumps in oxidized zones surrounding the unoxidized ore.

## PROPERTIES

*Physical*. Zellerite crystals are so fine that indivudual crystal faces could not be discerned. The habit of these crystals was always found to be fibrous and hairlike, aggregating into pincushion clumps (Fig. 1). The mineral is quite soft, with a hardness similar to gypsum. Cleavage was not observed; however, the aggregated clumps always fracture in the direction of elongation.

The measured specific gravity of the mineral is  $3.25 \pm 0.01$  as determined by suspension in a mixture of bromoform and methylene iodide.

The variation in density noted among the individual specimens was attributed to differences in state of hydration.

Zellerite is a light lemon yellow and on dehydration assumes a chalky yellow color. In long and short wave ultra-violet light, zellerite shows a weak patchy green fluorescence; however, as compared with other uranium carbonates, particularly liebigite, it is practically nonfluorescent.

*Optical.* In ordinary white transmitted light, zellerite is transparent and light yellow. Individual crystals seldom\_exceed 2 mm in length and  $5\mu$  in



FIG. 1. Zellerite showing crystalline habit. The pin-cushion clumps are implanted on gypsum. ×4.5.

width. Variations in indices were noted and could be related to the changes in the hydration state of the mineral. Indices of the lower hydrate were not measured because suitable crystals could not be obtained. The optical constants of zellerite given in Table 1 are considered to characterize the fully hydrated zellerite. Using the Gladstone-Dale law (Jaffe, 1956), the average index calculated for zellerite compares favorably with the average measured index.

Chemistry. The one-gram sample used for analysis was carefully purified by centrifuging in organic heavy liquids. The final concentrate was considered to be at least 98 per cent pure; the remaining 2 per cent includes minor amounts of clay, quartz and limonite. The metastability of zellerite means that even though the final separate was pure, some metazellerite was present and no precautions were taken to control the humidity. Spectrographic analysis and x-ray studies of the concentrate confirm the optical estimate of sample purity.

Procedures of the chemical analysis are described briefly. The original

|                                      | Zellerit                  | e                    | Metazellerite                           |        |  |
|--------------------------------------|---------------------------|----------------------|-----------------------------------------|--------|--|
| Crystal system                       | Orthorhor                 | nbic                 | Orthorhombic                            |        |  |
| Space Group                          | Pmn2 <sub>1</sub> or Pmnm | (probable)           | Phn2, or Phnm                           |        |  |
|                                      | Powder data <sup>1</sup>  | Single crystal       | Powder data <sup>1</sup> Single crystal |        |  |
| a                                    | $11.220 \pm 0.015$ Å      | 11.14 Å              | 9.718+0.005 Å                           | 9 7: Å |  |
| b                                    | $19.252 \pm 0.016$ Å      | 19.15 Å              | $18.226 \pm 0.009$ Å                    | 18 2 Å |  |
| С                                    | $4.933 \pm 0.016$ Å       | 4.94 Å               | $4.965 \pm 0.004$ Å                     | 4.9. Å |  |
| Cell volume                          | $1065.4 \pm 2.3$ Å        |                      | 879.5+0.7 Å                             |        |  |
| Cell contents (Ideal formula)        | $4[CaUO_2(CO_3)$          | $_2 \cdot 5 H_2 O$ ] | $4[CaUO_2(CO_3)_2 \cdot 3H_2O]$         |        |  |
| Density (calc. for<br>ideal formula) | $3.24_{2}$                |                      | 3.414                                   |        |  |
| Specific gravity<br>measured         | $3.25\pm0$                | 01                   |                                         |        |  |
| Biaxial negative                     | 2V = 30 - 4               | 40°                  | 2V ?                                    |        |  |
| $\alpha$ colorless                   | $1.536 \pm .0$            | 05                   |                                         |        |  |
| $\beta$ colorless                    | $1.559 \pm .0$            | 05                   |                                         |        |  |
| $\gamma$ light yellow                | $1.697 \pm .0$            | 05                   |                                         |        |  |
| Orientation                          | Z = C                     |                      | Z = C                                   |        |  |
| Dispersion                           | v > r                     |                      | 2                                       |        |  |
| n average (measured)                 | 1.597                     |                      | 1                                       |        |  |
| n calculated <sup>2</sup>            | 1.595                     |                      | 1.626                                   |        |  |

| TABLE | 1. | X-RAY | AND | Optical | DATA | FOR | ZELLERITE |
|-------|----|-------|-----|---------|------|-----|-----------|
|       |    |       |     |         |      |     |           |

<sup>1</sup> Data derived from least-squares refinement of x-ray powder data listed in Table 3 using the method of Evans *et al.* (1963).

<sup>2</sup> Calculated using the Gladstone-Dale law (Jaffe, 1956).

sample was air dried to a constant weight at  $110^{\circ} \pm 5^{\circ}$ C. The resulting loss in weight is reported as minus water. However, part of this minus water is thought to be essential to the mineral in order that there be 20 molecules of H<sub>2</sub>O per unit cell. A modified microcombustion train of the type made for the determination of carbon and hydrogen in organic compounds was used to determine H<sub>2</sub>O<sup>+</sup> and CO<sub>2</sub>. For this, a 20-mg sample was decomposed by ignition at 900°C in a stream of oxygen.

The  $R_2O_3$  was determined by difference after the total  $R_2O_3 + U_3O_8$  had been determined gravimetrically using carbon dioxide-free  $NH_4OH$  and

methyl red as the indicator. UO<sub>3</sub> was determined spectrophotometrically by the ammonium thiocyanate procedure in acetone-water medium after solution of the  $R_2O_3$  residue in (1+1) HNO<sub>3</sub>.

CaO was determined as the sulfate after it was separated from an  $85 \pm$  per cent ethyl alcohol solution. Qualitative spectrographic analysis of the CaSO<sub>4</sub> precipitate showed that the only major constituent was calcium; there were no minor constituents.

 $K_2O$  and  $Na_2O$  were determined by flame photometry. The filtrate from the CaO determination was transferred to a platinum evaporating dish, and taken to dryness, then ignited. The remaining salts were dis-

| Analyst, Robert Meyrowitz |       |       |        |      |  |  |
|---------------------------|-------|-------|--------|------|--|--|
|                           | 1     | 2     | 3      | 4    |  |  |
| CaO                       | 10.8  | 10.3  | . 1836 | 1.00 |  |  |
| $UO_3$                    | 56.6  | 53.9  | .1884  | 1.03 |  |  |
| $CO_2$                    | 17.7  | 16.9  | .3840  | 2.09 |  |  |
| $H_2O^+$                  | 13.0  | 12.3  | .6833  | 3.72 |  |  |
| SiO <sub>2</sub> +insol.  | 0.5   |       |        |      |  |  |
| $R_2O_3$                  | 1.0   |       |        |      |  |  |
| $K_2O$                    | 0.2   |       |        |      |  |  |
| Na <sub>2</sub> O         | 0.4   |       |        |      |  |  |
| Total                     | 100.2 |       |        |      |  |  |
| $H_2O(-)$                 | 6.9   | 6.6   | .3833  | 2.09 |  |  |
|                           |       | 100.0 |        |      |  |  |

#### TABLE 2. CHEMICAL ANALYSIS OF ZELLERITE Analyst, Robert Mevrowitz

1. Weight percent of the oxides determined on sample air dried to 110°C.

2. Recalculation of analyses to 100% without SiO2, R2O3, K2O, Na2O and insolubles.

3. Molecular proportions.

4. Molecular ratios.

solved in (1+1) HCl and transferred to a volumetric flask and diluted to volume. Aliquots of this solution were used for the K<sub>2</sub>O and Na<sub>2</sub>O determinations, comparing them to standard potassium and sodium solutions. Twenty-five milligrams were used for the H<sub>2</sub>O(-), SiO<sub>2</sub>+insoluble R<sub>2</sub>O<sub>3</sub>, CaO, UO<sub>3</sub>, K<sub>2</sub>O, and Na<sub>2</sub>O determinations.

The recalculated analysis of zellerite (Table 2) produces a formula that is distinct from the uranyl carbonates previously described. Assuming that part of the  $H_2O^-$  combined with  $H_2O^+$  characterizes fully hydrated zellerite, the calculated formula is  $CaUO_2(CO_3)_2 \cdot 5H_2O$ . Variation in the measured physical constants indicates different hydration states of zellerite. If we assume that  $H_2O^-$  as determined is easily lost, then a lower hydrate metazellerite  $CaUO_2(CO_3)_2 \cdot 3H_2O$  would become stable at higher temperatures or lower humidities. Metazellerite was not available in amounts sufficient to obtain precise physical measurements related to the changes accompanying hydration-dehydration, but as is demonstrated by the *x*-ray results, the structural change on dehydration is distinct and can be characterized.

X-ray crystallography. The x-ray powder pattern made of the fresh "zellerite sample" showed only the fully hydrated phase, zellerite, to be present (Table 3). Powder patterns made subsequently, after the sample had been exposed to the laboratory atmosphere for several weeks, invariably showed the dehydrated phase, metazellerite, to be present with zellerite. One x-ray powder pattern (Table 3) showed almost total conversion of zellerite to metazellerite.

Several needlelike crystals from the "zellerite sample" were examined with the Buerger x-ray precession camera. Invariably a strong singlecrystal pattern of the dehydrated metazellerite phase would appear in parallel orientation with the weaker single-crystal pattern of the fully hydrated zellerite phase. Zellerite is apparently unstable with respect to metazellerite under the conditions of the x-ray experiment, although it may persist metastably with metazellerite for long periods of time. Buerger precession photographs, exposed for 100 hours with molybdenum zirconium-filtered x-radiation, were made of the 0kl, 1kl, h0l, h1l, and h2l reciprocal lattice nets. These photographs show both phases to be orthorhombic with the following unit-cell data: zellerite, a  $11.1_4$ , b  $19.1_5$ , c  $4.9_4$  Å, diffraction symbol  $Pbn^*$ . Owing to the weakness of the x-ray pattern, the diffraction symbol of zellerite cannot be positively assigned.

In order to verify the unit-cell parameters obtained from the rather poor single-crystal patterns and also to obtain more accurate values for these parameters, the x-ray powder data of both phases was subjected to least-squares refinement (Evans *et al.*, 1963) using the single-crystal data as the starting parameters. The final parameters as obtained from the least-squares analysis are given in Table 1 along with the other pertinent crystallographic and optical data.

The dehydration of zellerite to metazellerite involves a decrease in cell volume of 186 Å<sup>3</sup>. This volume change strongly suggests a loss of 8 or 10 H<sub>2</sub>O molecules. The space group requires that there be an even number of atoms of each type in the unit cell. Therefore zellerite  $CaUO_2(CO_3)_2 \cdot 5H_2O$ , with Z=4 probably has two more H<sub>2</sub>O molecules per unit formula than metazellerite,  $CaUO_2(CO_3)_2 \cdot 3H_2O$ , with Z=4 if it is assumed there is a loss of 8H<sub>2</sub>O molecules. Should we presume a  $10H_2O$  loss on dehydration, the formula would have to be written  $Ca_4(UO_2)_4(CO_3)_8 \cdot 20H_2O$ , with

| Zellerite                                     |                  |        |                  | Metazellerite |         |         |     |
|-----------------------------------------------|------------------|--------|------------------|---------------|---------|---------|-----|
| Calculated <sup>1</sup> Observed <sup>2</sup> |                  |        | red <sup>2</sup> | Calc          | ulated1 | Observ  | ed2 |
| hkl                                           | <sup>d</sup> hkl | dhkl   | Ι                | hkl           | dhkl    | dhkl    | I   |
| 010                                           | 19.25            |        |                  | 020           | 9 113   | 9.10*   | 100 |
| 110                                           | 9.69             | 9.66   | 100              | 010           |         |         |     |
| 020                                           | 9.63             |        |                  | 110           | 8.575   |         |     |
| 120                                           | 7.31             | 7.33*  | 18               | 120           | 6_648   |         |     |
| 030                                           | 6.42             |        |                  | 130           | 5.152   | 5.140*  | 2   |
| 200                                           | 5,610            | 5,591  | 35               | 200           | 4.859   | 4.868*  | 13  |
| 130                                           | 5.570            |        |                  | 210           | 4,695   | 4.695*  | 36  |
| 210                                           | 5.386            | 5.405* | 3                | 040           | 4.557   | 4.552*  | 18  |
| 220                                           | 4,847            | 4.848* | 50               | 101           | 4.422   | 4.412*  | 18  |
| 040                                           | 4.813            |        |                  | 021           | 4.360   |         |     |
| 011                                           | 4.778            |        |                  | 111           | 4,297   | 4:296   | 36  |
| 101                                           | 4.515            |        |                  | 220           | 4.288   |         |     |
| 140                                           | 4.423            | 1 105  | 27               | 140           | 4.126   | 2.070*  | 10  |
| 111                                           | 4.396            | 4.407  | 25               | 121           | 3.978   | 3-978*  | 18  |
| 021                                           | 4.390            | 1 240* |                  | 230           | 3,193   | 3.194*  | 50  |
| 121                                           | 4,224            | 4.240* | * s              | 151           | 3,313   | 0.019*  | 0   |
| 031                                           | 3 011            |        |                  | 211           | 3 413   | 3 411   | 2   |
| 051                                           | 3,850            |        |                  | 041           | 3.357   | J_TIL   | 4   |
| 131                                           | 3 693            |        |                  | 240           | 3 373   | 3 3.30* | 13  |
| 310                                           | 3.671            |        |                  | 221           | 3.245   | 01000   | 10  |
| 240                                           | 3-653            | 3.651  | 35               | 310           | 3.189   |         |     |
| 150                                           | 3.642            | 01001  | and the          | 141           | 3,173   | 3.173*  | 18  |
| 211                                           | 3.638            |        |                  | 320           | 3,052   |         |     |
| 320                                           | 3.486            |        |                  | 060           | 3.038   | 3.033*  | 9   |
| 221                                           | 3.457            | 3.463* | 6                | 231           | 3.015   |         |     |
| 041                                           | 3.445            |        |                  | 250           | 2.916   | 2.915*  | 2   |
| 141                                           | 3.293            |        |                  | 160           | 2.899   |         |     |
| 330                                           | 3.231            | 3.232* | 3                | 330           | 2.858   | 2.858*  | 4   |
| 060                                           | 3.209            |        |                  | 151           | 2_813   | 2.812*  | 2   |
| 231                                           | 3,208            |        |                  | 241           | 2.762   | 2.763*  | 2   |
| 250                                           | 3.175            |        |                  | 301           | 2.713   |         |     |
| 160                                           | 3.085            |        |                  | 311           | 2.683   | 2.687*  | 6   |
| 051                                           | 3.035            |        |                  | 340           | 2.640   | 2.639*  | 1   |
| 301                                           | 2.980            |        |                  | 321           | 2.000   |         |     |
| 340                                           | 2.953            | 2 047  | 12               | 260           | 2 576   | 2 580*  | 1   |
| 241                                           | 2.945            | 2.941  | 13               | 170           | 2.570   | 2.000   | -   |
| 151                                           | 2.935            |        |                  | 251           | 2 514   |         |     |
| 321                                           | 2 847            | 2.851* | 2                | 161           | 2.504   | 2.508*  | 6   |
| 400                                           | 2.805            |        | 8                | 002           | 2.483   |         |     |
| 260                                           | 2.785            |        |                  | 331           | 2.477   | 2.478*  | 18  |
| 410                                           | 2.776            | 2.778  | 2                | 400           | 2.430   |         |     |
| 070                                           | 2.750            |        |                  | 350           | 2.421   | 2.415   | 5   |
| 331                                           | 2.703            |        |                  | 410           | 2.408   |         |     |
| 420                                           | 2.693            |        |                  | 022           | 2.395   |         |     |
| 061                                           | 2.690            | 2.687  | 9                | 112           | 2.384   |         | 16  |
| 350                                           | 2.683            |        |                  | 420           | 2.348   | 2.344*  | 2   |
| 170                                           | 2.671            |        |                  | 341           | 2.331   |         |     |
| 251                                           | 2.670            |        |                  | 122           | 2.326   | 2 20.44 |     |
| 101                                           | 2.010            |        |                  | 270           | 2.295   | 2.2947  | 1.  |
| 430                                           | 2.570            | 0 2002 | 3                | 201           | 2.280   |         |     |
| 341                                           | 2.334            | 2.332* | 9                | 420           | 2.218   | 9 957*  | a   |
| 270                                           | 2.409            | 2.468  | 3                | 430           | 2 244   | 4.401   |     |
| 012                                           | 2 446            |        |                  | 132           | 2.237   |         |     |
| 360                                           | 2.435            | 2.433* | 6                | 180           | 2.218   | 2.219   | 5   |
| 261                                           | 2.425            | A. 100 | 10               | 360           | 2.216   |         | 10  |
|                                               |                  |        |                  |               |         |         |     |

TABLE 3. X-RAY DIFFRACTION POWDER DATA FOR ZELLERITE AND METAZELLERITE

| Zellerite |                     |        |                 | Metazellerite |                     |        |                 |
|-----------|---------------------|--------|-----------------|---------------|---------------------|--------|-----------------|
| Calc      | ulated <sup>1</sup> | Observ | ed <sup>2</sup> | Calc          | ulated <sup>1</sup> | Observ | ed <sup>2</sup> |
| hkl       | dhkl                | dhkl   | I               | hkl           | dhkl                | dhkl   | I               |
| 411       | 2,419               |        |                 | 212           | 2.195               |        |                 |
| 080       | 2.406               |        |                 | 042           | 2.180               | 0 170  | 43              |
| 071       | 2.402               |        |                 | 351           | 2.176               | 2.178  | 14              |
| 112       | 2.390               |        |                 | 411           | 2.167               |        |                 |
| 022       | 2.389               |        |                 | 222           | 2,149               | 2,147* | 3               |
| 421       | 2.364               |        |                 | 440           | 2.144               |        |                 |
| 351       | 2.357               | 2.359  | 3               | 142           | 2.127               |        |                 |
| 180       | 2.353               |        |                 | 421           | 2.122               |        |                 |
| 171       | 2.349               |        |                 | 271           | 2.083               | 0.000  |                 |
| 122       | 2.337               |        |                 | 232           | 2.078               | 2.080  | 13              |
| 032       | 2.302               |        | 9               | 081           | 2.071               |        |                 |
| 431       | 2.279               |        |                 | 280           | 2.063               |        |                 |
| 450       | 2.267               | 1 0/2  | a.              | 431           | 2.054               |        |                 |
| 202       | 2.258               | 2.203  | 3               | 370           | 2.029               |        |                 |
| 132       | 2.255               |        |                 | 181           | 2.025               | 2.025  | 10              |
| 212       | 2.242               |        |                 | 361           | 2.024               | 2.025  | 18              |
| 510       | 2.229               |        |                 | 450           | 2.022               |        |                 |
| 370       | 2.216               | 0.014  | 2               | 152           | 2.008               | 1.98   | 1               |
| 280       | 2.212               | 2.214  | 9               |               |                     | 1.93   | 3               |
| 271       | 2.208               |        |                 |               |                     | 1.90   | 1               |
| 222       | 2.198               |        |                 |               |                     | 1.87   | 9               |
| 042       | 2,195               |        |                 |               |                     | 1.84   | 2               |
| 520       | 2.185               |        |                 |               |                     | 1.82   | 2               |
| 361       | 2.184               |        | 1               |               |                     | 1.78   | 6               |
| 441       | 2 + 175             | 2.173* | 2               |               |                     | 1.73   | 4               |
| 081       | 2.163               |        |                 |               |                     | 1.71   | 4               |
| 142       | 2.154               |        |                 |               |                     | 1.68   | б               |
| 090       | 2.139               | 2.138* | 2               |               |                     | 1.67   | 1               |
| 232       | 2.130               |        |                 |               |                     | 1.62   | 6               |
| 181       | 2.124               |        |                 |               |                     | 1.60   | 2               |
| 530       | 2.118               |        |                 |               |                     | 1.57   | 2               |
| 460       | 2.112               |        |                 |               |                     | 1.56   | 2               |
| 190       | 2.101               | 2.103* | 3               |               |                     |        |                 |
| 052       | 2.077               |        |                 |               |                     |        |                 |
| 451       | 2.060               | 2.057* | 3               |               |                     |        |                 |
| 312       | 2.047               |        |                 |               |                     |        |                 |
| 242       | 2.044               |        |                 |               |                     |        |                 |
| 501       | 2.043               |        |                 |               |                     |        |                 |
| 152       | 2.042               |        |                 |               |                     |        |                 |
| 540       | 2.034               |        |                 |               |                     |        |                 |
| 511       | 2.031               |        | 8               |               |                     |        |                 |
| 380       | 2.024               | 2.023  | 6               |               |                     |        |                 |
| 371       | 2.021               |        |                 |               |                     |        |                 |
| 281       | 2.018               |        |                 |               |                     |        |                 |
| 322       | 2.013               |        |                 |               |                     |        |                 |
|           |                     | 1.94   | 1               |               |                     |        |                 |
|           |                     | 1.86   | 4               |               |                     |        |                 |
|           |                     | 1.84   | 2               |               |                     |        |                 |
|           |                     | 1.82   | 2               |               |                     |        |                 |
|           |                     | 1.79   | 2               |               |                     |        |                 |
|           |                     | 1.73   | 2               |               |                     |        |                 |
|           |                     | 1.71   | 3               |               |                     |        |                 |

TABLE 3-(Continued)

 $^1$  d-spacings were calculated from the unit-cell parameters listed in Table 1. These parameters were obtained from a least-squares refinement of the observed d-spacings marked with an asterisk in the table above.

<sup>2</sup> Zellerite from Lucky Mc mine, Wyo. CuK<sub> $\alpha$ </sub> radiation, Ni filter ( $\lambda$ =1.5418 Å) Camera diameter:114.59 mm. Lower limit 20 measurable: approximately 8° (11.0 Å). Intensities measured with a calibrated intensity strip.

Z = 1, for zellerite and  $Ca_4(UO_2)_4$  (CO<sub>3</sub>)<sub>8</sub>·10H<sub>2</sub>O, with Z = 1, for metazellerite. The chemical analysis would suggest that an average of 20 H<sub>2</sub>O molecules per cell is correct for zellerite and observed change in volume would indicate that 12H<sub>2</sub>O molecules per unit cell for metazellerite is correct.

To test the validity of the formula for zellerite,  $CaUO_2(CO_3)_2 \cdot 5H_2O$ , we have a calculated density of  $3.242 \text{ g/cm}^3$ , which compares favorably with the measured specific gravity of  $3.25 \pm 0.01$ . The calculated average refractive index (Jaffe, 1956) of zellerite, using the ideal formula and calculated density from the x-ray data, is 1.595, and the average of the measured values on the analyzed material is  $1.597 \pm 0.005$ . The close agreement between the measured and calculated values for density and refractive index substantiates the proposed formula for zellerite. Dehydration of zellerite probably involves loss of 8 or  $10H_2O$  molecules, but verification of the metazellerite formula awaits further optical and specific gravity measurements on this lower hydrate.

Relationship to other uranyl carbonates. Zellerite is the only known natural representative of the uranyl dicarbonates having the general formula  $M^{2+}(UO_2)(CO_3)_2 \cdot nH_2O$ . Bayleyite, swartzite, liebigite, the more com-

|                | Zellerite<br>Ca(UO <sub>2</sub> )(CO <sub>3</sub> ) <sub>2</sub><br>·5H <sub>2</sub> O | Liebigite <sup>1</sup><br>Ca <sub>2</sub> (UO <sub>2</sub> )(CO <sub>3</sub> ) <sub>3</sub><br>·10H <sub>2</sub> O | Bayleyite <sup>1</sup><br>Mg <sub>2</sub> (UO) <sub>2</sub> (CO <sub>8</sub> ) <sub>2</sub><br>·18H <sub>2</sub> O | Rabbittite <sup>1</sup><br>Ca <sub>3</sub> Mg <sub>3</sub> (UO <sub>2</sub> ) <sub>2</sub><br>(CO <sub>3</sub> ) <sub>6</sub> (OH) <sub>4</sub><br>·18H <sub>2</sub> O | Swartzite <sup>1</sup><br>CaMg(UO <sub>2</sub> )-<br>(CO <sub>2</sub> ) <sub>3</sub> .12H <sub>2</sub> O |
|----------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| α              | 1.536 light<br>yellow                                                                  | 1.497 colorless                                                                                                    | 1.455 pinkish?                                                                                                     | 1,502 colorless                                                                                                                                                        | 1.465 colorless                                                                                          |
| β              | 1.559 colorless                                                                        | 1.502 pale<br>greenish yellow                                                                                      | 1.490 pale<br>yellow                                                                                               | 1.508 colorless                                                                                                                                                        | 1.51 yellow                                                                                              |
| γ              | 1,597 colorless                                                                        | 1.539 pale<br>greenish yellow                                                                                      | 1.500 pale<br>yellow                                                                                               | 1.525 colorless                                                                                                                                                        | 1.54 yellow                                                                                              |
| Color          | Lemon yellow                                                                           | Siskin green                                                                                                       | Yellow                                                                                                             | Pale green                                                                                                                                                             | Green                                                                                                    |
| Optic sign     | (+)                                                                                    | (+)                                                                                                                | (-)                                                                                                                | (+)                                                                                                                                                                    | (-)                                                                                                      |
| 2 V            | 30-40°                                                                                 | $40^{\circ}$                                                                                                       | 30°                                                                                                                | 2                                                                                                                                                                      | 40°                                                                                                      |
| Density        | $3.25 \pm 0.01$                                                                        | 2.41                                                                                                               | 2.05                                                                                                               | 2.57                                                                                                                                                                   | 2.3                                                                                                      |
| Flourescence   | Weak, patchy<br>green                                                                  | Bright green                                                                                                       | Weak, color<br>uncertain                                                                                           | Cream yellow                                                                                                                                                           | Bright yellowish<br>green                                                                                |
|                | Long and short<br>wave                                                                 | Long and short<br>wave                                                                                             | Long and short<br>wave                                                                                             | Short wave                                                                                                                                                             | Short wave                                                                                               |
| Habit          | Fibrous                                                                                | Prismatic                                                                                                          | Prismatic<br>acicular                                                                                              | Prismatic<br>acicular                                                                                                                                                  | Prismatic                                                                                                |
| Crystal system | Orthorhombic                                                                           | Orthorhombic                                                                                                       | Monoclinic                                                                                                         | Monoclinic                                                                                                                                                             | Monoclinic                                                                                               |
| Space group    | Pmn21 or Pmnm                                                                          | $Bba_2$                                                                                                            | $P2_1/a$                                                                                                           |                                                                                                                                                                        | $P2_1/m$ or $P2_1$                                                                                       |
| a              | 11.220 Å                                                                               | 16.71 Å                                                                                                            | 26.65 Å                                                                                                            | 32.6 Å                                                                                                                                                                 | 11.12 Å                                                                                                  |
| Ь              | 19,252                                                                                 | 17,55                                                                                                              | 15.31                                                                                                              | 23.8                                                                                                                                                                   | 14.72                                                                                                    |
| C              | 4.933                                                                                  | 13.79                                                                                                              | 6.53                                                                                                               | 9.45                                                                                                                                                                   | 6.74                                                                                                     |
| β              |                                                                                        |                                                                                                                    | 93°04′                                                                                                             | 90°                                                                                                                                                                    | 99°26′                                                                                                   |

TABLE 4. COMPARISON OF CALCIUM AND MAGNESIUM URANYL CARBONATES

<sup>1</sup> Data from Frondell (1958).

monly reported uranyl tricarbonates, have the ratio of 1:3 for  $(UO_3)$ :  $(CO_3)$  (Table 4). Rutherfordine, the anhydrous uranyl carbonate,  $UO_2CO_3$ , could be considered the end member of the uranyl carbonates if we consider a series as shown in Fig. 2.

The low-temperature chemical relationships in the  $U-O_2-H_2O-CO_2$  system have been explored adequately (Hostetler and Garrels, 1962; Garrels and Christ, 1959) so that the natural occurrence of uranyl carbonates can be explained. All of these authors have pointed out that both uranyl tri-



FIG. 2. Ternary diagram showing some mineral phases in the system  $Ca^{2+} - CO_3^{2-} - UO_2^{2+}$  given in molecular per cent.

carbonate  $[UO_2(CO_3)_3]^{4-}$  and uranyl dicarbonate  $[UO_2(CO_3)_2 \cdot 2H_2O]^{2-}$ complexes may form in waters with  $p_{CO_2} > 10^{-3}$  atmospheres and total ionic activity in excess of  $10^{-6}$ . As one would suspect, the activities of the uranyl carbonate complexes are very sensitive to variations in  $p_{CO_2}$  and pH of the containing solutions. The Eh- $p_{CO_2}$  diagrams constructed by Hostetler and Garrels (1962, p. 144–148) illustrate the stability fields of the uranyl carbonate complexes in response to changing conditions. Although these diagrams are representative of conditions at 25°C and 1 atmosphere, the environment of oxidation of the Lucky Mc uranium ore is so close to the depicted conditions that the natural occurrence of the uranyl carbonates can be related to the diagrams. Rutherfordine occupies a narrow field of stability with solutions whose pH is about 6, under oxidizing conditions, and with a total dissolved uranium activity in excess of  $10^{-4}$ . When the partial pressure of CO<sub>2</sub> is near that of the atmosphere ( $10^{-3.5}$  atmospheres), both schoepite (UO<sub>2</sub>(OH)<sub>2</sub>·H<sub>2</sub>O) and rutherfordine (UO<sub>2</sub>CO<sub>3</sub>), are stable together (Garrels, 1957). Schoepite becomes unstable with an increase of p<sub>CO<sub>2</sub></sub> in accordance with the reaction

# $UO_2(OH)_2 \cdot H_2O + CO_2 \rightarrow UO_2CO_3 + 2H_2O;$

should the increase of  $p_{CO_2}$  be accompanied by increase in pH, the uranyl dicarbonate complex becomes stable and those solutions containing enough Ca<sup>2+</sup> will precipitate zellerite on evaporation. By further increasing the pH at the same activities, the uranyl tricarbonate complex becomes stable instead of the dicarbonate, and solutions of this composition on evaporation would precipitate liebigite.

As stated earlier, liebigite forms as veins and incrustations in the primary dark ore during the early stages of oxidation at the Lucky Mc mine and before the breakdown of pyrite. Once the pH of the oxidizing surface is lowered by the pyrite alteration, zellerite is precipitated from these solutions rather than liebigite. In those areas removed from primary ore where  $CO_2$  has been depleted, schoepite forms in association with uranyl silicates. Zellerite therefore must occupy a field of stability intermediate between rutherfordine and liebigite in the zone of weathering.

# ACKNOWLEDGMENTS

We would like to thank Howard D. Zeller for bringing samples of this mineral to us for study and for his many helpful suggestions regarding its occurrence. Malcolm Ross was instrumental in finalizing the interpretation of the *x*-ray data and Charles Christ provided many helpful suggestions that improved the manuscript. Terry Clark carried out many of the laboratory measurements on the physical properties.

## References

indexing method. Am. Crystal Assoc. Program Ann. Meet., 1963, pp. 42–43 [abs. E-10]. FRONDEL, C. (1958) Systematic mineralogy of uranium and thorium. U. S. Geol. Survey Bull. 1064, 1–400.

GARRELS, R. M. (1957) Some free-energy values from geologic relations. Am. Mineral. 42, 780–791.

----- AND C. L. CHRIST (1959) Behavior of uranium minerals during oxidation. U. S. Geol. Survey Prof. Paper 320, pt. 6, 81-89.

GRANGER, H. G. (1963) Mineralogy. In, "Geology and technology of the Grants uranium region." New Mexico Bur. Mines Mineral Resources Mem. 15, 21-37.

HOSTETLER, P. B. AND R. M. GARRELS (1962) Transportation and precipitation of ura-

EVANS, H. T., JR., D. E. APPLEMAN AND D. S. HANDWERKER (1963) The least squares refinement of crystal unit cells with powder diffraction data by an automatic computer

nium and vanadium at low temperatures with special reference to sandstone-type uranium deposits. *Econ. Geol.* 57, 137–167.

- JAFFE, H. W. (1956) Application of the rule of Gladstone and Dale to minerals. Am. Mineral. 41, 757–777.
- SHARP, W. N. AND A. B. GIBBONS (1964) Geology and uranium deposits of the southern part of the Powder River Basin, Wyoming. U. S. Geol. Survey Bull. 1147-D, 1-60.
- ZELLER, H. D. (1957) The Gas Hills uranium district and some probable controls for ore deposition. Wyoming Geol. Assoc. Guidebook, 12th Ann. Field Conf., Sept. 1957, pp. 156-160.
- -----, P. E. SOISTER AND H. J. HYDEN (1956) Preliminary geologic map of the Gas Hills uranium district, Fremont and Natrona Counties, Wyoming. U. S. Geol. Survey Mineral. Inv. Map. MF-83.

Manuscript received, March 10, 1966; accepted for publication, March 28, 1966.

## 1578