AND L. B. SAND (1958) Hydrothermal synthesis of wairakite and calcium-mordenite. Am. Mineral. 43, 476-480.

----- L. B. SAND AND S. S. GOLDICH (1958) A contribution on the Hector, California, bentonite deposit. *Econ. Geol.* 53, 30.

BARRER, R. M. (1950) Ion-exchange and ion-sieve processes in crystalline zeolites. Jour. Chem. Soc. London, 2346, 2350.

AND P. J. DENNY (1961) Hydrothermal chemistry of the silicates. Part X. A partial study of the field CaO-Al₂O₃-SiO₂-H₂O. *Jour. Chem. Soc. London*, 983–1000.

----- AND D. J. MARSHALL (1964) Hydrothermal chemistry of the silicates. Part XII. Synthetic strontium aluminosilicates. Jour. Chem. Soc. London, 491.

COOMBS, D. S. (1955) X-ray observations on wairakite and noncubic analcime. *Mineral.* Mag. 30, 699-708.

HOSS, H. AND R. ROY (1960) Zeolite studies. I. Synthesis and stability of the calcium zeolites. Jour. Geol. 68, 41-53.

MEITES, L. AND H. C. THOMAS (1958) Advanced Analytical Chemistry. McGraw-Hill Book Co., New York, 364.

SMITH, J. V. (1963) Structural classification of zeolites. Mineral. Soc. Am., Spec. Paper 1, 282.

STEINER, A. (1953) Hydrothermal rock alteration at Wairakei, New Zealand. Econ. Geol., 48, 1-3.

(1955) Wairakite, Ca-analog of analcime, a new zeolite mineral. *Mineral. Mag.* 30, 691-698.

TAYLOR, W. H. (1930) The structure of analcite (NaAlSi₂O₆). Zeit. Krist., 74, 1-19.

THE AMERICAN MINERALOGIST, VOL. 51, MAY-JUNE. 1966

SILICA-RICH CHABAZITE FROM THE BARSTOW FORMATION, SAN BERNARDINO COUNTY, SOUTHERN CALIFORNIA¹

ARTHUR J. GUDE, 3RD AND RICHARD A. SHEPPARD, U. S. Geological Survey, Denver, Colorado.

The Barstow Formation of middle and late Miocene age (Lewis, 1964) is a thick sequence of fluviatile and lacustrine rocks. Mudstones and sandstones are dominant, but locally more than 30 relatively thin tuffs are recognized. Recent work by the authors on the alteration of the tuffs has shown that much of the vitric material is replaced by zeolites, potash feldspar, opal and (or) montmorillonite. These authigenic minerals are generally so finely crystalline that positive identification can be made only by x-ray techniques. Routine examination of x-ray diffractometer traces of bulk samples of an altered tuff from the upper part of the formation indicated that some samples consist mainly of a zeolite having a diffractometer pattern similar to chabazite. Detailed study of the diffractometer constant of the diffractometer study study of the diffractometer study study

¹ Publication authorized by the Director, U. S. Geological Survey.

tometer traces and optical determinations indicate that the authigenic zeolite differed from "normal" chabazites thus far reported.

The chabazite-bearing tuff crops out in the vicinity of Fossil Canyon, approximately 10 miles north of Barstow, San Bernardino County. Although the tuff is displaced by several northwest-trending faults, it can be traced along strike for about a mile. The altered tuff is white to light gray and 2 to 4.5 feet thick.

Thin section study of the altered tuff shows that the chabazite occurs as a mosaic or as aggregates of anhedral crystals replacing vitric material. Individual crystals average approximately 20 microns in size. Locally, the altered tuff consists almost entirely of silica-rich chabazite, but generally crystal fragments and relict glass or clinoptilolite, erionite, or montmorillonite are associated with the chabazite. Crystal fragments of plagioclase (An₃₂), sanidine, quartz, biotite, hornblende, zircon, and apatite, generally constitute less than 10 per cent of the tuff.

The mean index of refraction of the authigenic chabazite ranges from 1.461 to 1.468 (± 0.001), and the birefringence is very low. This compares with the range of 1.470 to 1.494 given by Deer *et al.* (1963, p. 387) for chabazite from nonsedimentary environments. Most of these chabazites have a mean index of refraction near 1.48.

A sample of the chabazite-rich tuff, selected to avoid as many impurities as possible, was separated for chemical analysis. The altered tuff was first crushed and then ultrasonically disaggregated. Then the -100+270mesh fraction was concentrated by repeated centrifuging in a heavy liquid mixture (sp. g. ≈ 2.2) of bromoform and acetone. The final separation contained approximately 99 per cent chabazite and 1 per cent impurity, mainly montmorillonite and calcite.

The chemical analysis and content of the unit cell based on 72 oxygens is given in Table 1. The ideal formulas for chabazite and herschelite are $Ca_2Al_4Si_8O_{24} \cdot 12H_2O$ and $Na_4Al_4Si_8O_{24} \cdot 12H_2O$, respectively, and there are three such formula units per unit cell (Mason, 1962, p. 985). The calculated formula for the zeolite from the Barstow Formation is

Ca0.19Mg0.19Na1.64K0.13Al2.46Si9.51O24.10 H2O.

A comparison of this formula with that of ideal chabazite and herschelite shows marked differences in the cation content and the Si/Al ratio. Although the Barstow zeolite is alkali-rich, it has only slightly more than half of the cations of ideal herschelite. Charge balance is maintained by the high content of Si which is in excess of that for ideal chabazite or herschelite. Ideal chabazite and herschelite have a Si/Al ratio of 2, but the Barstow zeolite has a ratio of 3.86.

Natural chabazite shows considerable variation in cation content and

Si/Al ratio (Deer *et al.*, 1963, p. 365). Departures from the ideal formula can be explained by replacement of the type Na(K)Si = CaAl and the type $Na_2(K_2) = Ca$. The chabazite-herschelite series is characterized by $Na_2(K_2)$ replacement of Ca (Mason, 1962), whereas the Barstow chabazite can be derived from ideal chabazite by mainly Na(K)Si replacement of Ca(Mg)Al. A small amount of $Na_2(K_2)$ replacement of Ca also is necessary to account for the composition of the Barstow zeolite.

1		2	
59.68	Si	28.53	
13.11	Al	7.39	
.13	Fe^{3+}	.05	
.02	Fe ²⁺	.01	
.79	Mg	.56	
1.13	Ca	.58	
5.30	Na	4.91	
.62	K	.38	
10.25	H_2O^+	16.34	
8.76	H_2O^-	13.97	
.04	0	72.00	
.02	Si+Al+Fe ³⁺	35.97	
.00	Si/Al+Fe ³⁺	3.83	
.01			
99.86			
	1 59.68 13.11 .13 .02 .79 1.13 5.30 .62 10.25 8.76 .04 .02 .00 .01 99.86	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE 1. CHEMICAL COMPOSITION AND UNIT CELL CONTENTS OF AUTHIGENIC CHABAZITE FROM THE BARSTOW FORMATION

 Serial No. D100593; analyst: E. S. Daniels. Locality: tributary to Fossil Canyon, NE1/4SE1/4 sec. 15, T. 11 N., R. 2 W., Opal Mountain quadrangle, San Bernardino County. Calif.

2. Atoms per unit cell, recalculated on the basis of O = 72. Ti, Mn and P were omitted in the calculation. Analysis uncorrected for CO_2 and its equivalent of Ca.

The water content of the Barstow zeolite may be low compared with ideal chabazite. In her study of the fibrous zeolites, Foster (1965) found that the water content is lower for Na members than for Ca members. Barrer and Sammon (1955) also noted a similar relationship in ion exchanged chabazite: the univalent ions produce a less hydrated condition than the bivalent ions. Perhaps part of the low water value in the Barstow zeolite is due to loss of weakly held water during storage in the low humidity of the Denver laboratory prior to analysis.

X-ray diffraction powder data for herschelite, normal chabazite, and the chabazite from the Barstow Formation are presented in Table 2. The

MINERALOGICAL NOTES

I Herschelite			2 Chabazite				3 Silica-rich chabazite				
Calculated Observed		Calculated		Observed		Calculated		Observed			
hk1	dhkl	dhkl	I	hkl	dhkl	d_{hkl}	I	hkl	dbkl	dhkl	I
*		11-89	8			-	-				
101	9.3711	9.361	51	101	0 3560	0.251	50	101	0.0010	1	
110	6.8994	6.894	22	110	6 9020	9.331	50	101	9.2819	9,263	70
102	6.3833	6,379	3	102	6 3705	6 204	10	110	0.8558	6.846	22
201	5.5560	5.555	15	201	5 5407	5 555	0	102	0.3053	6.298	8
		5.127	8	201	5 5491	5.555	9	201	5.5146	5.514	32
003	5.0339	5.032	40	003	5 0216	5.021	20	002	1.0/0/		
202	4-6855	4-679	6	202	1 6794	3,021	30	003	4.9606	4.959	38
*		4-500	3	202	4.0704	4.077	0	202	4.6409	4.643	4
211	4-3273	4.322	67	211	1 3227	4 274	76	014	1 0000		_
113	4-0666	4,109	0	113	4 0599	4.044	10	211	4,2970	4 - 293	100
300	3.9834	3.976	8	300	3 0706	2.076	1	113	4.0189	4.020	5
212	3.8762	3.877	23	212	3 8710	2 070	2	300	3-9582	3,957	5
104	3.6000	3.600	21	104	3 5019	3.670	28	212	3.8432	3.844	20
220	3.4497	3.448	18	220	3 4465	2 149	12	104	3.5503	3.549	47
311	3.2373	3.235	11	311	3 7341	2 225	13	220	3.4279	3.427	21
204	3.1917	3,193	7	204	3 1952	2 100	0	311	3.2150	3.217	10
303	3 1237	3.125	2	303	3 1100	3.190	5	204	3.1526	3.152	11
312	3.0349	3.031	2	312	2 0212	2 0 2 2	0	303	3.0940	3.056	2
*		2.981	18	012	3+0315	5.035	2	312	3.0116	3.011	1
401	2-9307	2.930	100	401	2 0270	2.025	100	101	-		
105	2.9283	21000	100	105	2.9218	2.925	100	401	2.9113	2.911	62
214	2-8967	2.897	20	214	2.9214	2 000		105	2.8871	2.885	22
223	2.8456	2.852	0	214	2 8416	2.890	30	214	2.8643	2.864	34
402	2.7780	2 7775	5	102	2 0410	2.842	3	223	2.8201	2.820	6
321	2.6974	2.1115	5	221	2 6048	2 - 1159	4	402	2.7573	2.7575	3
205	2 6955	2.6953	11	205	2.0948	2 6000		321	2.6797	2.6812	2
410	2.6077	2.6062	18	410	2 6052	2+0898	1	205	2,6608	2.6619	6
322	2.5769	2.5758	4	222	2.0033	2.0048	10	410	2.5912	2.5909	11
006	2.5170	210100	- 50	006	2 - 5741	2.5743	2	322	2.5582	2.5565	3
215	2.5107	2.5108	12	215	2.5108	2 2047		215	2.4805	2.4806	12
314	2,4908	2.0100	***	213	2.3038	2,5007	11	006	2.4803		
116	2.3645	2 3635	2	116	2.4808	2 2614	8	314	2.4660		
501	2.3606	2.0000	-	501	2.3392	2.3011	4	501	2-3452		
404	2.3428			404	2.3384	2.3575	2	116	2.3324		
413	2.3155	2.3160	7	404	2.3392	0.0000		404	2.3205	2.3224	1
330	2.2998	2 3001	5	413	2+3120	2.3098	5	413	2.2968	2.2979	2
502	2.2786	2.0001	(90)	502	2.27/0	2 - 2996	4	330	2 2853	2 2855	2
421	2.2335			421	2 - 2/02	2.2707	1	502	2,2625	2.2629	4
315	2.2374	2.2275	31	421	2.2314	2.2333	I	421	2.2190		
324	2.2184	6=2213	-	313	2.2285		Î	315	2.2082		
422	2.1637	2,1631		324	2.2151	0		324	2.1980		
		as a strict		422	4 1014			422	2.1485	2.1493	1

TABLE 2. X-RAY DIFFRACTION POWDER DATA FOR HERSCHELITE AND CHABAZITE (DIFFRACTOMETER; COPPER RADIATION, NICKEL FILTER)

1. Herschelite; AMNH No. 12987. Locality: Aci Reale, Sicily.

2. Chabazite. Locality: North Table Mountain near Golden, SE ½ sec. 22, T. 3 S., R. 70 W., Jefferson County, Colorado.

3. Silica-rich chabazite (Ca_{0.19}Mg_{0.19}Na_{1.64}K_{0.12}Al_{2.46}Si_{9.51}O₂₄-10H₂O); No. D100593; Barstow Formation. Locality: tributary to Fossil Canyon, NE $\frac{1}{4}$ SE $\frac{1}{4}$ sec. 15, T. 11 N., R. 2 W., San Bernardino County California.

* Reflections due to intergrown gmelinite,

1 Herschelite			2 Chabazite				3 Silica-rich chabazite				
Cal	culated	Observe	d	Calc	ulated	Observe	d	Calc	ulated	Observe	d
hkl	dhkl	dhki	I.	hkl	dhki	dhki	I	hkl	$d_{\mathbf{hk}\mathfrak{l}}$	dhk1	I
306	2.1278	2.1295	5	306	2.1235	2.1233	2	511	2.1112		2
511	2.1250	2.1252	4	511	2.1229			405	2,1019	2.1026	3
405	2.1240			405	2.1204			306	2,1018	1	
107	2 1231			107	2.1180	2.1190	2	107	2,0927		
333	2.0918	2.0919	15	333	2.0893	20901	6	333	2.0756	2.0759	0
512	2,0645	2.0638	2	512	2.0624			512	2.0502		
226	2.0333			226	2.0294			325	2,0096		
325	2.0300			325	2_0267			226	2.0095	0.0010	
207	2.0292			207	2.0246			504	2.0018	2,0018	2
504	2.0194	2.0200	1	504	2,0166	2.0157	1	207	2.0015	1 0504	- 22
600	1,9917	0		600	1.9898			600	1.9791	1.9794	
431	1.9482			431	1.9463			431	1_9356	1.9350	2
217	1.9467	1.9473	2	217	1,9425	1,9414	1	424	1.9216		2
424	1.9381			424	1.9355			217	1.9213	1.9201	2
520	1.9135	1.9144	4	520	1.9118	1.9110	3	520	1.9014	1.9012	5
432	1.9013			432	1.8993	270320217		432	1.8883	1 05(2	
505	1,8742	1.8754	5	505	1_8714	1.8714	3	505	1.8564	1.8503	2
514	1.8659			514	1.8634			514	1.8503	1 0000	
108	1.8646			108	1.8601			603	1.8382	1.8381	3
603	1.8520			603	1,8499			108	1.8378		
416	1.8110	1.8117	20	416	1 8079			611	1.7976		
611	1.8092			611	1.8075	1,8074	8	425	1.7918	1. 7010	12
425	1.8087			425	1.8060			416	1 - 7918	1.7918	14
317	1.8081	1.8080	12	317	1.8045	1.8047	8	317	1,7862		
208	1.8000	0.000		208	1.7959	11120000		523	1,7755	4. 7770	2
523	1.7887	1.7892	2	523	1.7867	1.7862	1	208	1.7752	1.77500	0
612	1.7715	1.7710	3	612	1.7697	1.7710	2	612	1,7595	1.7590	0
515	1.7496	1 1		515	1.7470			515	1.7330	1 1	
407	1.7490	1		407	1.7457	107 107 100 100 100 100 100 100 100 100	1.046	434	1.7286		
434	1.7428	1		434	1.7406	1.7397	12	407	1.7285		
218	1.7417	1.7415	2	218	1.7379	1.000	8	218	1,7185	10000	e.
440	1.7248	1.7251	10	440	1.7232	1.7214	5	440	1:7140	1.7149	a
336	1.6978			336	1_6950			531	1.6854	1 1	
531	1.6964			531	1.6947			701	1.6854	2 2011	- 68
701	1.6964	1.6960	5	701	1 - 6947	1.6946	3	336	1.6807	1.0811	
327	1.6954			327	1.6922			327	1.6700		
009	1.6780	1.6774	5	009	1.6739	1.6754	1.1	532	1.0539		
702	1.6651			532	1.6634			702	1.0539	1 6527	4
532	1 6651			702	1.6634		- 14 H	009	1.0535	1.0337	6
621	1 6473	1 News	- 15	621	1.6457	1.6466	4	621	1.0307	1.0304	0
435	1.6469	1.6450	5	435	1.6446	1.6431	3	435	1.0324		
614	1.6412			614	1.6392			614	1.0282		
318	1.6403			318	1 - 6369			443	1.6200		
443	1.6317			443	1.6299		1.1	318	1.0197		
119	1.6304	1.6303	1	119	1.6266	1_6260	1	622	1-6078	1 1	
622	1 6187			622	1.6170			119	1.6074		
507	1 -6014			507	1.5986	1.5971	2	507	1.5840	1 5764	9
408	1.5958	1.5966	1	408	1.5926			408	1 5700	1+3704	10.67
710	1.5828			710	1.5814			710	1-5/28		1
606	1.5618	1		606	1.5595			615	1.5470	1 5466	
615	1.5604		1	615	1.5583	1+5582	4	600	1 34/0	1-3400	1
427	1 - 5600	1.5596	5						1		II

TABLE 2 (continued)

calculated d values are those resulting from the least-squares refinement procedure (Evans *et al.*, 1963). All the diffraction data are compatible with space group $R\bar{3}m$. The d values for both herschelite and normal chabazite are slightly larger than those for the silica-rich chabazite. The (401) reflection is the most intense peak for herschelite and normal chabazite, but the (211) reflection is the most intense peak for the authigenic chabazites. This difference may be partly due to differences in composition and differences in crystal size or orientation.

Cell constants and indices of refraction for these same specimens are compared in Table 3. The cell of the chabazite from the Barstow Formation is noticeably smaller than that of either herschelite or normal chabazite and probably reflects the relatively high Si content in the alumino-

	Herschelite 1	Normal chabazite 2	Silica-rich chabazite from the Barstow Formation 3
a (Å)	13.799 ± 0.001	13.786 ± 0.002	13.712 ± 0.001
c (Å)	15.102 ± 0.002	15.065 ± 0.004	14.882 ± 0.002
Cell volume (Å ³)	2490.2 ± 0.5	2479.5 ± 0.8	2423.1 ± 0.4
$\alpha \ (\pm 0.001)$	1.479	1.494	1.460
γ (±0.001)	1.481	1.496	1.462

TABLE 3. CRYSTALLOGRAPHIC AND OPTICAL DATA FOR HERSCHELITE, NORMAL CHABAZITE, AND SILICA-RICH CHABAZITE FROM THE BARSTOW FORMATION

silicate framework. The relatively low indices of refraction of the Barstow zeolite also may be due to the high Si content, although the exchangeable cations and degree of hydration also are known to affect the optical parameters of zeolites. Relatively small cell constants and low indices of refraction, similar to those of the Barstow chabazite, were found for authigenic chabazites from altered rhyolitic tuffs of the Oligocene and Miocene John Day Formation in Oregon and the Miocene and Pliocene(?) Belted Range Tuff in Nevada.

The relationship between the chabazite of the Barstow Formation and normal calcium-rich chabazite is analogous to that between clinoptilolite and heulandite. Clinoptilolite is alkali- and silica-rich and has lower refractive indices than heulandite (Mumpton, 1960; Mason and Sand, 1960). The analogy can be carried even further inasmuch as silica-rich chabazite and generally clinoptilolite form from rhyolitic volcanic glass in a sedimentary environment, whereas most chabazite and heulandite occurs in fractures and cavities of more basic igneous rocks. Authigenic analcime (Ross, 1928) and phillipsite (Hay, 1964) from sedimentary rocks originally rich in rhyolitic vitric material also are more siliceous than their counterparts occurring in basic igneous rocks. The availability of relatively large amounts of silica and alkalies in rhyolitic volcanic glass probably explains the high silica and high alkali content of authigenic zeolites from sedimentary environments (Mumpton, 1960).

Other occurrences of authigenic chabazite doubtlessly will be found when the mineralogy of rhyolitic tuffs of Cenozoic age in the desert areas of the southwest are studied in detail. Rather than propose a new name for this zeolite from the Barstow Formation, the authors prefer to term it "silica-rich chabazite." This terminology implies a structural relationship to chabazite and serves to set it apart from herschelite. Perhaps additional analyses of chabazites from rhyolitic tuffs will more clearly define the compositional variation at the high Si end and warrant selection of an end member name.

Acknowledgements

The authors thank J. W. Adams, D. L. Hoover, Brian Mason, and R. E. Wilcox for providing chabazite specimens. Appreciation is expressed to D. E. Appleman for refinement of the x-ray powder data and to E. S. Daniels for the chemical analysis of chabazite from the Barstow Formation.

References

- BARRER, R. M. AND D. C. SAMMON (1955) Exchange equilibrium in crystals of chabazite. Jour. Chem. Soc. (London) 2838-2949.
- DEER, W. A., R. A. HOWLE AND J. ZUSSMAN (1963) Rock-forming Minerals. Vol. 4, Framework Silicates, John Wiley and Sons Inc., New York.
- EVANS, H. T., JR., D. E. APPLEMAN AND D. S. HANDWERKER (1963) The least-squares refinement of crystal unit cells with powder diffraction data by an automatic computer indexing method [abs. E-10]. Program and Abstracts, Am. Crystal. Assoc. Meet., Cambridge, Mass., 42.

FOSTER, M. D. (1965) Studies of the zeolites—Compositional relations among thomsonites, gonnardites, and natrolites. U. S. Geol. Surv. Prof. Paper 504-E.

HAY, R. L. (1964) Phillipsite of saline lakes and soils. Am. Mineral. 49, 1366-1387.

LEWIS, G. E. (1964) Miocene vertebrates of the Barstow Formation in southern California. U. S. Geol. Surv. Prof. Paper 475-D, 18-23.

MASON, BRIAN (1962) Herschelite-a valid species? Am. Mineral. 47, 985-987.

----- AND L. B. SAND (1960) Clinoptilolite from Patagonia: the relationship between clinoptilolite and heulandite. Am. Mineral. 45, 341-350.

MUMPTON, F. A. (1960) Clinoptilolite redefined. Am. Mineral. 45, 351-369.

Ross, C. S. (1928) Sedimentary analcite. Am. Mineral. 13, 195-197.