THE AMERICAN MINERALOGIST, VOL. 51, MAY-JUNE, 1966

PALERMO "HÜHNERKOBELITE" IS ALLUAUDITE

D. JEROME FISHER, Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois.

The crystals figured and described by Dr. Moore in the current issue of this journal cannot properly be called *hühnerkobelite*. This name was given to material from Hühnerkobel, Bavaria by Lindberg in 1950 on the basis of x-ray powder diffraction data which showed that it was different from type arrojadite and similar to the material from Norrö, Sweden and to some varulites. Lindberg's work was valuable in helping to clear up some confusion, but a new mineral name should not have been suggested on the basis of such scanty data. Nevertheless, the name was enshrined in Danas' System (1951) where it was said to be "probably orthorhombic."

At this time alluaudite (described from Chanteloube, France by Damour in 1848) was not a well-defined species, though it had long been given species rank in Dana, and had been described from Varuträsk, Sweden in 1937 by Quensel. When I gave the first modern optical and x-ray description of alluaudite (Fisher, 1955), it soon became obvious that hühnerkobelite, varulite and hagendorfite were of the alluaudite type, and this was made clear in print (Fisher, 1957). The similarity in optical properties was pointed out in this note. Thoreau in 1954 indicated the close relation between the x-ray powder pictures of varulite and the Buranga alluaudite.

Herewith in Table 1 sufficient powder diffraction data are given to establish that we are dealing with a single isomorphous series. In particular the near-identity of E and G are enough to identify the Palermo material as alluaudite. In my 1955 paper I used the C2/c orientation for indexing the mineral; in my 1957 paper I changed this to the $I2_1/a$ orientation of this same space group for reasons stated, and my 1962 note has the indexing in this orientation.

When I looked over Moore's manuscript, I pointed out that hühnerkobelite was a discredited name. At that time chemical analytical results on the Palermo material were not available. The data now in Moore's paper make clear that the Palermo mineral fits in my triangular diagram (Fisher, 1957) just "southwest" of no. 1 (the Norrö alluaudite), and a long way from no. 12 (type hühnerkobelite). As for nomenclature in this series, I prefer to stick to the designations given in my table headings (Fisher, 1957). Many more data on the composition of the alluaudites appear in a paper currently in press (Fisher, 1965).

Just as the name *hühnerkobelite* should be dropped from the literature, it is my opinion that *hagendorfite* too should suffer this fate. This name was assigned by Strunz in 1954 to "a member of the hühnerkobelitevarulite series" which he considered to be "apparently triclinic, but pseudo-orthorhombic." The Strunz description was otherwise quite satisfactory; however, when he sent me a sample for single crystal work (Fisher, 1956) it became clear that it also was monoclinic alluaudite.

The relations of these minerals to one another so far as is known is

	No.		Line	s with visual		Locality		
A	6-0482	2.72/10	6.30/5	3.08/2	2.53/3	5.44/2	3.49/3	Hühnerkobel
в	6-0483	2.72/10	6.33/5	3.08/1	2.51/1	5.47/2	3.50/4	Skrumpetorp
С	6-0487	2.74/10	6.35/3	3.08/1	2.56/4	5.46/3	3.50/4	Varuträsk
D	6-0492	2.71/10	6.26/5	3.12/3	2.53/6	5.44/3	3.48/5	Norrö
Е	10-419	2.73/10	6.27/8-	3.07/7	2.51/7-	5.47/6-	3.49/6-	Chanteloube
F	12-25	2.69/10	6.11/5	3.08/5	2.59/8-	5.33/3-	3.42/6	Hagendorf
G		2.703/10	6.24/7	3.085/6-	2.531/5	5.41/5	3.465/2	Palermo
	(hkl)	141	020	040	132	200	310,031	
	(hkl)	330,400		112	312,420			
	(hkl)	240		231				
	Line No.	11c, 12a, b	2	6b, 7, 8	17a, b	3	5	(Fisher, 1955, 1962)

TABLE 1. A.S.T.M. CARDS ON ALLUAUDITES

Notes. A, B, C and D are from Lindberg (1950) who called B and C varulite and A and D huhnerkobelite. For A, lines of 16.06/1 and 8.76/6 were also given. The only indexed card (before G) is E from Fisher (1955)³ who recognized the material as alluaudite. F is from Strunz (1954) who called the mineral hagendorfite. G is from Moore (1965) who gave the name hühnerkobelite. The order of listing of lines is that of decreasing intensities as given for E. The indices given are for the $I_{21/a}$ cell.

shown in my triangular diagram (Fisher, 1957). Unfortunately the analyses of the Chanteloube and Buranga alluaudites do not give the amount of FeO (if any) which is present. It is clear from this diagram that if one wishes to give a different mineral name to material falling in each of the three quadrilaterals, the term *varulite* has priority over *hagendorfite*.

I have recently completed a diffractometer study of two alluaudites. The results are shown in Table 2. With such complicated material, the basic noise level was fairly high and many of the "peaks" were not very sharp. For this reason the intensities given are of the integrated type, based on counts or on planimeter readings, and not on peak heights, and the 2ϕ (Fe/Mn) values used to compute the spacings were mostly not much better than $\pm 0.05^{\circ}$. However the results are of considerable interest, for they show how quite different powder pictures may be obtained from isomorphous compounds of this complexity. For instance the most intense peak of the Hagendorf material at d=2.73 comes from two planes

	Buranga					Hagendorf				
Line No.	Is	d		T	hkl	Т	d		T,	
		Calculated	Observed	Id		Ls	Calculated	Observed	TQ	
1	3	8.2746	8.278	18	110	2	8.2502			
2	9	6.2622	6.267	53	020	7	6.2970	6.292	55	
3	7	5.5112	5.472	33	200	6	5.4627	5.429	12	
4a1	2	4.2869	4.260	12	121	3	4,3308		v.w.	
4a	5	4.2546	4.184	12	211	4	4.2398	4.208	w.	
4b	3	4,1372	4.125	10	220	2	4.1252		v.w.	
4c	1 -	3.7483			211	1+	3.7468	3.681	20	
5a	7+	3.5258			310	8	3.4986	3,480	25	
5b	5	3.4966	3.503	35	031	4	3.5264	3.517	w.	
6b	6	3.1311)			040	4	3.1464	3 110	57	
7	9	3.0890	3,063	100	112	10	3.1424∫	5.110	01	
8	7	3.0536			231	7	3.0699	3.059	9	
9	5 —	2.9775	2.014	12	321	2	2.9831	2.954	22	
10	5+	2.9404	2.914	15	$20\overline{2}$	9	2.9846)			
11a	7+	2.8819	2.071	EE	112	9	2.9252	2.900	43	
, 11b	5	2.8609	2.8/1	55	231	4	2.8663	2 868	19	
11b ¹	9	2.8494	2.833	26	022	6	2.8914	2.000		
11c	9	2.7638	0.550		141	10	2.7834	2 777	35	
12a	6	2.7582	2.758	22	330	5	2.7502	2.111	00	
12a1	9	2.7556	2.736	32	400	9	2.7314	2 721	100	
12b	9	2.7224	2.721	57	240	10	2.7265	2.121		
13	5	2.6882	2 645	0	141	4	2.7028	2.701	30	
14	7+	2.6617	2,045	8	$22\overline{2}$	6	2.6967	2.674	16	
15	5	2.6214	2,602	15	202	8	2.6398	2.619	13	
17a	3	2.5335]			132	9	2.5671	2.549	44	
17b	5+	2.5341	2.518	39	312	8	2.5595	2.536	35	
17b1	7+	2.5222)			420	7	2.5056	2.519	24	
19a	5	2.4183	2 400		222	4	2.4360	2 418	w	
19c	7	2.3326	2.400	v.w.	051	5	2.3491	1,110		

TABLE 2. DIFFRACTOMETER RESULTS WITH ALLUAUDITES

 $\begin{array}{l} I_s = \mbox{Uncorrected intensities estimated visually from single crystal photographs.} \\ I_d = \mbox{Diffractometer intensities } (w = \mbox{weak}; v.w. = \mbox{very weak}). \\ \mbox{Calculated spacings are based on unit cells in Fisher, 1956.} \end{array}$

Line No.		Bura	nga			Hagendorf				
	Is	d			hkl		d			
		Calculated	Observed	Id		Is	Calculated	Observed	Id	
21b	2	2.1995	2 182	vw	332	5	2 2197	2 204	0	
22b	7	2.1712	2.155	5±	510	7	2.1543	2.204	20	
24a1	9	2.1030			013	9	2.1401	2.117	26	
24a	7	2.0874	2,086	58	060	6	2.0990	2.099	12	
24b	7	2.0696			350	7	2.0706	2.066	8	
24c	9	1,9940			332	7	2.0000	1.989	10	
25a	5	1,9641			402	5	1.9625			
25a1	7	1.9521			260	6	1 9595	1.058	7	
25b	7+	1.9494			530	5	1.9380	1,950	,	
26	?	1:9148			152	4+	1.9302	1.925	6	
28a	9	1.8241			451	6	1 8263		-	
28b	?	1.8212			442	3	1.8313	1.841	28	
29a	7+	1.8116		-	611	7	1 8017	1.920	W	
29b	1	1.7886			413	3	1.8082	1.784	6	
30a	2	1.7711			143	7	1 7961)			
30b	7	1,7583			532	8	1.7635			
30b1	?	1.7483			062	7-	1.7644	1.751	11	
31	7	1.7232			071	6	1.7330)			
32a	5	1.6882			541	5	1.6818			
32a1	5	1.6833			323	5	1.6948	1.701	6	
32b	9	1.6639			442	8	1.6655			
33a	5	1.6549	h		550	3	1.6512			
33a1	5	1.6337			$62\overline{2}$	4	1.6344	1.656	8	
34a	5	1.6241			053	6	1.6448			
34a1	7	1.6086			370	4	1.6133			
34b	3	1.6006)			114	3	1:6297			
34b1	5 —	1.5999			004	0	1.6288	1.606	4	
35a	9	1 5923	1.580	9	204	9	1.6228	1.000	T	
34b11	2	1.6020			253	7	1.6216)			
35b	5+	1.5911			523	4	1.6045	1.602	9	
36a	9	1.5845)			640	8	1.5771)			
36a1	9	1.5656	1.577?	13	080	5	1.5743	1.566	7	
31	1	1.3023)			710	5	1.5489	1.541	14	
	2	1.5097			602	8	1 5028			

TAPLE 2 (continued)

(400 and 240) that are not sharply separated in d values, as they are in the case of the Buranga sample. In the latter the most intense peak is at d=3.09 coming from three planes (040, $11\overline{2}$, $23\overline{1}$); diffraction from these appears as two separate peaks on the chart from the Hagendorf sample. Similarly single peaks from planes numbers 17 and 24 for the Buranga sample each appears as triple peaks from the Hagendorf material. Many peaks representing spacings less than 2.00 that could not be distinguished from background on the Buranga chart were significant on the Hagendorf record.

References

FISHER, D. J. (1955) Alluaudite. Am. Mineral. 40, 1100-1109.

----- (1956) Hagendorfite Unit Cell. Bull. Geol. Soc. Am. 67, 1694-1695.

----- (1957) Alluaudites and varulites. Am. Mineral. 42, 661-664.

----- (1962) Alluaudite and caryinite. Am. Mineral. 47, 163-165.

----- (1965) Dickinsonites, fillowite, and alluaudites. Am. Mineral. 50, 1647-1669.

LINDBERG, M. L. (1950) Arrojadite, hühnerkobelite and graftonite. Am. Mineral. 35, 59-76.

MOORE, P. B. (1965) Hühnerkobelite crystals from Palermo, etc. Am. Mineral. 50, 713– 717.

PALACHE, C. et al. (1951) The System of Mineralogy of the Danas, Vol. 2. John Wiley and Sons, New York.

QUENSEL, P. (1937) Varuträsk I, the Li-Mn phosphates. *Geol. För. Förh.* (Stockholm) 59, 77-96.

STRUNZ, H. (1954) Hagendorfit, ein neues Mineral der Varulit-Hühnerkobelit-Reihe. Neues Jahrb. Mineral., Monatshefte, 252-255.

THOREAU, J. (1954) L'alluaudite de la pegmatite de Buranga. Acad. roy. Belgique Bull. Cl. Sci. 40, 230-237.

THE AMERICAN MINERALOGIST, VOL. 51, MAY-JUNE, 1966

REPLY TO PROF. D. J. FISHER

PAUL B. MOORE, Department of Geophysical Sciences, University of Chicago, Chicago, Illinois.

I welcome Prof. Fisher's note; it emphasizes the continuing problem of nomenclature of the orthophosphates of manganese and iron. I have explicitly employed the name *hühnerkobelite* (= Fisher's ferroan-alluaudite) in consonance with its use in Palache *et al.* (1951) and as implied by the given composition in Strunz (1957). In particular, I feel that Palache *et al.* (1951) shall continue to be the most frequently used source of mineral nomenclature and I shall strive, at least where applicable, to use their proposed terminology.

In Table 1 of Fisher (above), note that "G," Palermo hühnerkobelite,