SYNTHESES OF THE SCANDIUM ANALOGUES OF AEGIRINE, SPODUMENE, ANDRADITE AND MELANOTEKITE

JUN ITO AND CLIFFORD FRONDEL, Department of Geological Sciences, Harvard University, Cambridge, Massachusetts.¹

ABSTRACT

Unit-cell dimensions and optical data are given for synthetic NaScSi₂O₆, LiScSi₂O₆, Ca₃Sc₂Si₃O₁₂, and Pb₂Sc₂Si₂O₉. Cell dimensions also are given for intermediate compositions in the solid solution series extending between NaScSi₂O₆ and the Fe³⁺ analogue aegirine, between Ca₃Sc₂Si₃O₁₂ and the Fe³⁺ analogue andradite and between Pb₂Sc₂Si₂O₉ and the Fe³⁺ analogue, melanotekite. A series probably also exists between LiScSi₂O₆ and LiFeSi₂O₆.

The broad role of Sc as a trace element in ferromagnesian silicates was originally interpreted by Goldschmidt and Peters (1931) as involving a valence-coupled diadochy of Sc^{3+} with Fe^{3+} and Mg. New data on the solid solutions formed by Sc^{3+} and on the size of this ion, however, support an interpretation involving diadochy with Fe^{3+} and Al.

SCANDIUM-AEGIRINE

NaScSi₂O₆, isostructural with NaFeSi₂O₆, aegirine, was synthesized by the hydrothermal crystallization of a gel of the same bulk composition. The gel was prepared by precipitating a HCl solution of SC₂O₃ and Na₂SiO₃ in the molar ratio 1:3 by the addition of ammonia to a final pH of 10. The precipitate was then centrifuged, washed with dilute ammonia, and added to sufficient aqueous solution of Na2SiO3 to make the bulk composition correspond to NaScSi₂O₆. The resulting thin slurry was thoroughly mixed and evaporated slowly to dryness. The final preparation was heated hydrothermally in a cold-seal stainless steel bomb, fitted with a silver liner, at 750°C and 2 kbars for 48 hours. We also have synthesized compositions between NaScSi₂O₆ and NaFeSi₂O₆, with the ratios $(Sc_{0.75}Fe_{0.25})$, $(Sc_{0.5}Fe_{0.5})$ and $(Sc_{0.25}Fe_{0.75})$, by a similar procedure using HCl solutions containing Sc₂O₃ and FeCl₃ in the desired ratios. The unit-cell dimensions of these isostructural compositions vary linearly with composition, and solid solution between the Sc3+ and Fe3+ endcompositions appears to be complete.

NaScSi₂O₆ also was synthesized by fusion in sodium tungstate as flux. The charge used was $Sc_2O_3 0.3g$, $SiO_2 0.6g$ and $Na_2 WO_4 \cdot 2H_2O 50g$. The charge was held at 1180°C for 12 hours, cooled at 10°C per hour to 900°C and then quenched. Sodium molybdate also was used as a flux successfully.

The monoclinic crystals of $NaScSi_2O_6$ obtained from sodium tungstate fusions were colorless and ranged up to 2 mm in length. They were prismatic on *c* with {100}, {010}, {hk0} and complex terminations with

¹ Mineralogical Contribution no. 453.

Composition	$a, \text{\AA}$ 9.83±0.02	$b, \mathrm{\AA}$	<i>c</i> , Å	β	
NaScSi ₂ O ₆		9.06±0.02	5.37 ± 0.01	$107.2^{\circ} \pm 0.1$	
Na(Sc 75Fe 25)Si2O6	9.77	8.98	5.35	107.0°	
Na(Sc 5Fe 5)Si2O6	9.73	8.90	5.33	107.1°	
Na(Sc. 25Fe. 75)Si2O6	9.69	8.84	5.32	107.3°	
LiScSi ₂ O ₆	9.83	8.98	5.37	110.4°	
LiFeSi ₂ O ₆	9.81	8.73	5.37	111.4°	
Pb ₂ Sc ₂ Si ₂ O ₉	7.00 ± 0.01	11.30 ± 0.02	10.44 ± 0.02		
Pb ₂ (Sc ₁ Fe ₁)Si ₂ O ₉	7.00	11.12	10.22		
Pb2Ga2Si2O9	6.95	10.90	9.91		
Pb2Cr2Si2O9	6.88	10.84	10.01		
Ca ₃ Sc ₂ Si ₃ O ₁₂	12.23 ± 0.01				
Ca ₃ (Sc ₁ Fe ₁)Si ₃ O ₁₂	12.13				
Ca ₃ In ₂ Si ₃ O ₁₂	12.36				
Ca ₃ (In ₁ Fe ₁)Si ₃ O ₁₂	12.20				
Ca ₃ (Sc ₁ In ₁)Si ₃ O ₁₂	12.29				

TABLE 1. UNIT-CELL DIMENSIONS OF SYNTHETIC PRODUCTS

{0kl}, {h0l} and large faces of two {hkl} forms. Contact twins on (100) with reentrant terminations were observed. The substance is optically negative with α 1.683, β 1.715, γ 1.724; Y = b, $\alpha \wedge c \, 8.0^\circ \pm 0.2^\circ$, $2V_{\gamma}$ large. The material synthesized hydrothermally was too fine-grained for satisfactory optical study. The synthetic end-composition NaFeSi₂O₆ had $\alpha \sim 1.765$, and the (Sc₁Fe₁) run had $\alpha \sim 1.71$. All of the runs appeared to be pure. The unit-cell dimensions obtained from X-ray diffractometer charts taken in filtered Cu radiation with Si as internal standard, and indexed following Frondel and Klein (1965), are listed in Table 1. The X-ray power data are given in Table 2.

SCANDIUM-SPODUMENE

The scandium analogue of spodumene, $\text{LiScSi}_{2}O_{6}$, was grown from $\text{Sc}_{2}O_{3}$ and SiO_{2} in lithium molybdate flux. The ratio of charge to flux was 1:10 by weight. The melt was held at 1250°C for 24 hours and then was cooled at 5°C per hour to 950°C and quenched. The crystals obtained were monoclinic, prismatic to needle-like on c, with the forms {100}, {010}, {hk0} and indistinct oblique terminations. The substance is optically negative, with α 1.702, β 1.710, γ 1.716; $\alpha \wedge c$ 37°±0.5°, Y=b, $2V_{\gamma}$ large. Contact twins on (100) are common, and there is a good prismatic cleavage, presumably (110). The unit-cell dimensions derived from the indexed diffractometer pattern are given in Table 2. We also have obtained crystals containing an undetermined amount of Fe³⁺ in solid solution, with α 1.722, and at least a partial series extends toward LiFeSi₂O₆.

${ m NaScSi_2O_6}$			LiScSi ₂ O ₆			
hkl	d	I	hkl	d	Ι	
110	6.544	25	110	6.43	100	
020	4.539	30	020	4.489	40	
111	3.680	8	111	3.562	15	
220	3.262	10	021	3.348	5	
221	3.050	100	220	3.211	20	
310	2.963	50	221	3.004	20	
131	2.611	10	310	2.902	90	
022	2.557	25	130	2.846	10	
221	2.525	30	131	2.603	5	
311	2.301	3	002	2.507	3	
040	2.258	2	221, 401	2.449	10	
112	2.230	10	112	2.170	5	
331	2.168	10	$330, 42\overline{1}$	2.140	5	
421	2.139	8		1.759	10	
240	2.038	2		1.717	5	
041	2.071	8		1.641	5	
$24\overline{1}$	2.012	5		1.606	10	
511	1.984	3		1.545	5	
422	1.885	2		1.493	5	
331	1.868	3				
510	1.840	2				
150	1.780	10				
042	1.693	5				
441, 223	1.659	10				
151	1.646	15				
440	1.633	15				
351, 660	1.567	10				
$60\overline{2}$	1.557	5				
$53\overline{2}$	1.540	3				
133	1.529	8				
060	1.509	8				

TABLE 2. X-RAY POWDER DATA FOR NAScS12O6 AND LIScS12O6 Cu radiation, Ni filter, in Angstrom units. Relative intensities in arbitrary chart units.

SCANDIUM-MELANOTEKITE

The synthesis of melanotekite $(Pb_2Fe_2Si_2O_9)$, kentrolite $(Pb_2Mn_2Si_2O_9)$ and of intermediate members of this complete solid solution series has been reported elsewhere (Ito and Frondel, 1967). Using similar procedures, we have synthesized the Sc, Ga and Cr analogues of these compounds by the hydrothermal recrystallization of gels at 450°C and 2 kbars. The unit-cell dimensions of these substances, as determined from indexed X-ray powder diffractometer charts, are given in Table 2. The

SCANDIUM SILICATES

composition $Pb_2(Sc_1Fe_1)Si_2O_9$ also was synthesized and a complete series probably extends between the Fe³⁺ and Sc end-compositions.

Scandium-andradite

The synthesis of garnets containing Sc in the six-coordinated site has already been reported. These garnets include $Ca_3Sc_2Ge_3O_{12}$ (Tauber, *et al.* 1961), $Gd_3Sc_2Fe_3O_{12}$ (Geller, *et al.* 1965), $Y_3(Sc,Fe^3)_2Fe_3O_{12}$ (Cunningham, 1965), $Ca_3Sc_2Si_3O_{12}$ (Mill, 1962), and the hydrogarnet Sr_3Sc_2 (OH)₁₂ (Ito and Frondel, 1967b). We have synthesized $Ca_3Sc_2Si_3O_{12}$ and also the composition $Ca_3(Sc_1Fe_1^3)Si_3O_{12}$ intermediate between it and $Ca_3Fe_2Si_3O_{12}$, andradite. The syntheses were effected by the hydrothermal recrystallization of gels prepared by the general method of Ito and Frondel (1967a). The runs were made at 680°C and 2 kbars for 20 hours. We have similarly synthesized $Ca_3In_2Si_3O_{12}$, $Ca_3(In_1Fe_1)Si_3O_{12}$ and $Ca_3(Sc_1In_1)Si_3O_{12}$. Complete solid solubility probably exists between the Sc, In and Fe³⁺ members. The products were fine-grained but distinct dodecahedra were observed. The unit-cell dimensions cited in Table 1 were obtained from indexed X-ray diffractometer charts taken in filtered Cu radiation with Si as internal standard.

DISCUSSION

The ionic radius of the Sc³⁺ ion in six-coordination with oxygen is generally cited in the literature as 0.83 Å. This value is based on the structural analyses of Sc₂O₃ and Sc₂Si₂O₇ by Zachariasen (1927, 1930). The large size of this ion would seemingly preclude any significant degree of solid solution with Al or Fe3+. This view was orginally taken by Goldschmidt and Peters (1931) in their survey of the geochemistry of scandium. They interpreted the observed dispersal of Sc as a trace element in solid solution in ferromagnesian silicates as involving the valencecoupled diadochy of Sc³⁺ with Fe²⁺ and Mg rather than the direct substitution for Fe³⁺ or Al. The present study, however, and experimental studies of Sc-beryl (Frondel and Ito, 1968), Sc-garnets (Cunningham, 1965; Villers and Lombard, 1964) and the system Sc₂O₃-Fe₂O₃ (Geller, et al. 1961) provide evidence of the extensive mutual substitution of Sc3+ and Fe³⁺. The substitution of Sc³⁺ and Al is shown in the system Sc₂O₃-Al₂O₃ (Toropov and Vasil'eva, 1963) and in natural aluminum phosphates (Frondel, Montgomery and Ito, 1968). This becomes reasonable in view of recent measurements of the Sc-O distances in various compounds, including refinements of the structures of Sc₂O₃ and Sc₂Si₂O₇, that show the ionic radius of Sc3+ in six-coordination to be much smaller than 0.83 Å. Values have been obtained in the range from 0.69 Å to 0.78 Å, depending on the ionic-covalent proportions in the metal-oxygen

JUN ITO AND CLIFFORD FRONDEL

bond and on other factors (Geller, 1957; Geller, *et al.* 1967; Cruickshank, *et al.* 1962). It now appears that the role of Sc^{3+} as a trace element in garnet, allanite and ferromagnesian silicates in general is based on diadochy with Al and in particular Fe^{3+} rather than with Fe^{2+} and Mg. A review of the crystal chemistry of scandium is given elsewhere (Frondel, 1968).

References

CRUICKSHANK, D. W. J., H. LYNTON AND G. A. BARCLAY (1962) A reinvestigation of the crystal structure of thortveitite. Acta Crystallogr., 15, 491.

CUNNINGHAM, J. R. (1965) Initial permeability and derived anisotropy of scandium-substituted yttrium-iron garnet. J. A ppl. Phys., 36, 2491.

FRONDEL, C. AND C. KLEIN (1965) Ureyite, a new meteoritic pyroxene. Science, 149, 742. (1968) Crystal chemistry of scandium as a trace element in minerals. Z. Kristallogr. (in press).

---- AND ITO, J. (1968) Synthesis of the scandium analogue of beryl. Amer. Mineral., 53, 943-953.

GELLER, S. (1957) Crystallographic studies of perovskite-like compounds: rare earth scandates. A cta Crystallog., 10, 243.

-----, H. J. WIILLIAMS AND R. C. SHERWOOD (1961) Substitution of the Fe³⁺ ion in Sc₂O₃ and In₂O₃. J. Chem. Phys., **35**, 1908.

----, P. ROMO AND J. P. REMEIKA (1967) Refinement of the structure of scandium sesquioxide. Z. Kristallogr., 124, 136.

—, H. J. WILLIAMS, R. C. SHERWOOD AND G. P. ESPINOSA (1965) Magnetic and crystallographic studies of substituted gadolinium-irons garnets. J. Appl. Phys., 36, 88.

GOLDSCHMIDT, V. M. AND C. PETERS (1931) Zur Geochemie des Scandiums. Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl., 257.

ITO, J. AND FRONDEL, C. (1966) Syntheses of the kentrolite-melanotekite series. Ark. Mineral. Geol., 4, No. 4, 387.

----- AND ------ (1967b) New synthetic hydrogarnets. Amer. Mineral., 52, 1105.

MILL, B. V. (1962) Hydrothermal syntheses of garnets containing V, In and Sc. Dokl. Akad. Nauk SSSR, 156, 814.

TAUBER, A., C. G. WHINFREY AND E. BANKS (1961) The crystal chemistry of some germanium garnets. J. Phys. Chem. Solids, 21, 25.

TOROPOV, N. A. AND V. A. VASIL'EVA (1963) Phase relations in the system scandium oxidealuminum oxide. *Dokl. Akad. Nauk SSSR*, **152**, **137**9.

VILLERS, G. AND P. LOMBARD (1964) Crystalline and magnetic properties of complex cerium and yttrium garnets. J. Phys., 25, 853.

ZACHARIASEN, W. H. (1927) The crystal structure of the modification C of the sesquioxides of the rare-earth metals. Norsk Geol. Tidsskr., 9, 310.

(1930) The structure of thortveitite, Sc₂Si₂O₇. Z. Kristallogr., 73, 1.

Manuscript received, December 1, 1967; accepted for publication, January 22, 1968.

1280

AND — (1967a) Synthetic zirconium and titanium garnets. Amer. Mineral., 52, 773.